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System’s Response

* We can find the time response of dynamic
systems for arbitrary initial conditions and
Inputs

Y1) =LY ()] = L[G(s)U(s)]

» Classifying the response of some standard
systems to standard Iinputs can provide
Insight
» Ex Systems: first order, second order

tharkerd Wpuls ”“”””Q“f&t‘:"’"\“’ R gush

» Ex Inputs®™ “impulse, step, ramp; sinusoid
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System’s Order

The order of the system is given by the maximum power of s in the denominator polynomial, ().
Here.Q(s)=a°s'+a|s*'+a,s'"+ .......................... +a sta,

Now, n is the order of the system |

When n = (, the system is zero order system.

When n = 1, the system is first order system.

When n = 2, the system is second order system and so on.

The numerator and denominator polynomial of equation (2.10) can be expressed in the factorized
form as shown in equation (2.11). orler b Y s fglior Loty = 5 oF Jt pols

T09)= P(s) . (s+2)(s+2).... "(s+z!l
QS)  (5+p) (54D, ) (s+p,)

wed 2.11)

Py Py P, are poles of the system,

Now, the value of n gives the number of poles in the transfer function. Hence the order is also
given by the number of poles of the transfer function.
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Transient Response and Steady-State
Response.

The time response of a control system consists of two parts:
- the transient response

- and the steady-state response.

By transient response, we mean that which goes from the initial
state to the final state.

By steady-state response, we mean the manner in which the
system output behaves as t approaches infinity. Thus the system
response c(t) may be written as

c(t) = ctr(t) + css(t)



Dynamic Behavior

In analyzing process dynamic and process control systems, it 1s
important to know how the process responds to changes in the
process inputs.

A number of standard types of input changes are widely used for
two reasons:

1. They are representative of the types of changes that occur
in plants.

2. They are easy to analyze mathematically.



Laplace Transform of Standard Inputs

Resm s Abeggt = odp o e sysh.

Step Function:

The unit step function is,

o™
1 u(t) = 1 fort>0
? =: ) uforE<i)
@ N —st 1”
L{U(t)} = Jlll(t)'e-ﬂ dt = J.I'C—Sl dt = [C ]
0 0 =S 0
—0 ]
= F‘”-fﬂ} ase =0
-8 -8

L {u(t))

0| -




Laplace Transform of Standard Inputs

Ramp Function: o pchinn

The unit ramp function is defined as,

s
62 l'(t) =

fort=0
fort<0

L {x(t))

t

0

Ir(t) e dt = I te™ dt
0 0

Integrating by parts,

-t 1° o st o
=[t‘e ] —JE‘—-.ldtz[O-—O]w&-]-Ic”’“dt
—s -S $
0 0 0
1[(:"3‘ r llc'Oo eoJ o
= = = | e — e ase =0
s| -s S =8 -8
0
1
L {x(t) = To
S
1
Lit u(t)) = = as r(t) = t u(t)



Laplace Transform of Standard Inputs

Ramp Function:

The unit ramp function is defined as,

rit) = t fort=0
=0 fort <0

Lr®) = [r(t)ye™ dt=[te™ dt
0 0

Integrating by parts,

L (x(t)} =

Lit u(t)) = as r(t) = t u(t)



Laplace Transform of Standard Inputs

wprls TeApovse
Impulse Function: / us
The unit impulse function is §(t) and defined as, ;
= \lb(:"')
8t = 1 fort=0 =,
=0 fort=0

We know the relation between unit step and unit impulse. wil & P

lope = Z¥o
B L
o du(f) ain W W otie
© = dt o
!
Veokt
Taking Laplace transform of both sides, ol ‘
du(t) b
u |
o - {29
di(t)] _ 3 |
L{T} = s F(s) - £(07) By
L {88} = s. Liu®) - u(®),_, Blns b o)
u(tf,_, = O
1
Liut)} = =
1
L{S(t)} = S.g—o

L{5(t) = 1
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= Consider the first-order system shown in Figure 5-1(a).
Physically, this system may represent an RC circuit, thermal
system, or the like
tasbor fudhon b afl [V ord syp isite soce
CC(S) 1 R(s) Es) [ C(s) R(s) I C(s)
— = ——— S [——
o RGs) @+ - i
&L’tﬁw Sivcho ;(,; live ¥ of e sy '

= Unit-Step Response of First-Order Systems. Since the
Laplace transform of the unit-step function is 1/s, substituting
R(s)=1/s into Equation, we obtain

Expanding C(s) into partial fractions gives

l T

C(s — = =
(s) Ts + 1

by  Qarkiol fiow et




Ky=)
e = =T

c(t)y=1— e, fort = 0

Equation states that initially the output c(t) is zero and finally it becomes
unity.
One important characteristic of such an exponential response curve c(t)

is that at t=T the value of c(t) is 0.632, or the response c(t) has reached
63.2% of its total change

This may be easily seen by substituting t=T in c(t).That is,
c(T)=1-e~1 =0.632
The exponential response curve c(t) is shown.

In one time constant, the exponential response curve has gone from 0O
to 63.2%o0f the final value.

In two time constants, reaches 86.5%. <, S'OD€=17
At t=3T, 4T, and 5T, the response ( }
reaches 95%, 98.2%, and 99.3%,

Thus, fort > 4T, the response

remains within 2%. 0.632
As seen from Equation

, the steady state is reached

mathematically only after an

infinite time.

df)=1-¢D

1

98.2%

2T T a7 5T
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s Unit-Ramp Response of First-Order Systems.

= Since the Laplace transform of the unit-ramp function is 1/s#, we obtain
the output of the system of

1 1
C S) = Y
( ) TS Ll l y r(f) A
Expanding C(s) into partial fractions gives 0
C(S) = L — 1 . T; o —-— Steady-state
SZ S Ts + 1 error
Taking the inverse Laplace transform: o7

c(ty=t—T +Te"", fort=0

The error signal e(7) 1s then

e(t)

r(t) — c(t)
1 —

z ]
T( —t T) 0 2T 4T 6T t

Above Equation states that initially the output c(t) is zero and finally it becomes unity



Unit-Impulse Response of First-Order Systems. For the unit-impulse input,
R(s) = 1 and the output of the system of Figure 5-1(a) can be obtained as

1
C(s) = —— 5-7
() Ts +1 =1
The inverse Laplace transform of Equation (5-7) gives
in OC:
. K ET
c(t) = ie"/r fort=0 =Dt ° (5-8)

T ?

The response curve given by Equation (5-8) 1s shown 1n Figure 5-4.

ct) k

Section 5-2 / First-Order Systems 163



= for the unit-ramp input the output c(t) is

c(t)y=t—T+Te'", fort=0

= For the unit-step input, which is the derivative of unit-ramp input, the
output c(t) is
c(t)y =1— e, fort = 0
= Finally, for the unit-impulse input, which is the derivative of unit-step
input, the output c(t) is
c(t) = %e"/r, fort = 0
Comparing the system responses to these three mputs clearly indicates that the response
to the derivative of an input signal can be obtained by differentiating the response of the
system to the original signal. It can also be seen that the response to the integral of the
original signal can be obtained by integrating the response of the system to the original
signal and by determining the integration constant from the zero-output nitial condi-
tion. This 1s a property of linear time-invariant systems. Linear time-varying systems and

nonlinear systems do not possess this property.



= First-Order Systems:

= Step Response:

G(s)=

/initial slope= 1/t

Y(s) _
U(s)
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Transient Response Specifications: Rise Time
Let’s first take a look at Ist-order step response
4

H(s) = . a >0 (stable pole)
s+ a
DC gain = 1 (by FVT)
H (s 1 |
Step response: Y (s) = (5) = . = — —
B s(s+a) s s+a
y(t) = L Y (s)} = 1(¢t) —
e Z_@-,\/«
jw = e
A
G(s) s-plane
R(s) C
SO e RCU RNV S




Rise Time
Step response: y(t) = 1(t) —e

Rise time t,.: the time it
takes to get from 10% of

steady-state value to 90%

\

L W

In this example, it is easy to compute ¢, analytically:

In0.9
1 — e—ato.l — 0.1 e_atO.l — 009 to,l _ 11
a
In0.1
1 — e—ato,g — 0.9 6—ato_g —01 to,g _ n
a
b too —to g — In0.9 —In0.1 _ 1n_9 - g _ 92T
a a a

. A
L= -5



: , 50 : :
PROBLEM: A system has a transfer function, G(s) = 150" Find the time con-
stant, 7', settling time, 75, and rise time, 7. JEat

ANSWER: 7,.=0.02s, T, =0.08s, and 7, = 0.044 s.

The complete solution 1s located at www.wiley.com/college/nise.
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- Second-Order Systems
Steau de! v s v, fg, e &

2 = 2 yed /s

¢ P breguency (p)
. Foike
By the quadratic formula, the poles are:

H(s) =

s = —Cw, £ w.n\/CQ——l
= —w, (¢ VE-T)

The nature of the poles changes depending on (: poe der on awe vt op ¢

” ,
QO /_\ .
N both poles are real and negative P oo
W ! 9"/ " Cun dowped ss1H)

one negative pole ( = e .

¢=1
¢ <1 two complex poles with negative real parts | e b

z

v v

(ol Part AR W2
S = —ax jwg
Q\Ampiug erq,u*“@

where 0= Cwn, wg=wnpV1—C_2
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Prototype 2nd-Order System

Suik 1S &lolMe becye ool 2

Y

o)
Pol‘q *V‘/K/ﬂ — vy Q; H -S) — n

de

The poles are

s2 + 2Cwn s + w% "

¢ <1

s = —(w, £ jw,V1—(2 = —0 =% jwy

W Lonain 7 Yo Sewr] order

Im 7%

T wyg = wpV 1 — (P

| %
: 2 Wn ) - &>
I
| ~
N r .
% — an 4 O Re
I

Note that

2 2 2 2 2
o +wd:Cwn+w.

COS Y = = (

Poles will chempe  deP o § Wn



2nd-Order Response

Let’s compute the system’s impulse and step response: o« ws

2 )\/'7_:‘ D
H v ) = wn' -f w)
(s) = 5 5
s* + 2Cwp s + w3
» Impulse response: Crromiar formor L P e Topdsc
romn I~ =
1&pmse

\2 ¥
ht) = = H () = -1 (wn/wd)wd‘}
—e
Wl

ot

“sin(wgt) (table, # 20)

» Step response:

3_1 {H(S) } — 3—1 { S[( 02 T w(QI }??mm frckion.

S S + 0-)2 + w?]] Expan i
l', -\'—b‘
o 3 (c+ B)>> Ve
=1— e_ft (c:os(wdt) + — sin(wdt)> (table, #21)
Wd

Suyy will M gible o4 lovo A 8 N q{ww;; Ve
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2nd-Order Step Response

H(s) = i = “n
52 + 2Cw, s + werz, (s + 0)2 T wle

u(t) = 1(t) — y(t) =1—e " (c:os(wdt) +

? Sin(wdt))

Wl

where 0 = (w,, and wg = w,\/1 — (? (damped frequency)
y()

_ ! The parameter ¢ is called
15[ the damping ratio
I /\ > ( > 1: system 1is
B0 1 A overdamped
o | \/ L i
W — =01 » ( < 1: system is
0.5} Z 0 underdamped
' (=] e » ( = 0: no damping ﬁf’“’”’;;‘
................... T t ( ) Oge{q},oyg ""‘“. o
2 4 6 8 10 12 14 (sw )
» Sl ot onhied dmbiv W\



2nd-Order Step Response

2 W2
o (S) S n _ n ‘
s2 + 2Cwns + w.,% (S + O>2 + wle

u(t) = 1(t) — y(t) =1—e 7" (c:os(wdt) +

? sin(wdt)>

Wd
where o = (w,, and wy = w,\/1 — (? (damped frequency)

We will see that the parameters ¢ and w,, determine certain
important features of the transient part of the above step
response.

We will also learn how to pick ¢ and w,, in order to shape these
features according to given specifications.



Transient Response Specs

Now let’s consider the more interesting case: 2nd-order response

w2 w?

H(s) = n — n :
() s? + 2Cwps + w? (s +0)%+ wfl

where o = (w,, wg = wp/1 — (2 (C < 1)

Im
A

PR—— wi = /TG

o
Step response: y(t) =1—e (Cos(wdt) + — Sin(wdt)>
W



Transient-Response Specs

o
Step response: y(t) =1 —e 7 (cos(wdt) + — Sin(wdt))
W

<
)
T

M| TR SR SR (N S SR S | L w}] r

» rise time ¢, — time to get from 0.1y(oco) to 0.9y(oc0)
» overshoot M, and peak time ¢,

» settling time t; — first time for transients to decay to
within a specified small percentage of y(oco) and stay in
that range (we will usually worry about 5% settling time)



b/ .

Transient-Response (or Time-Domain) Specs

.
.
i
S 'é%t'sllo' 121
Do we want these quantities to be large or small?
» £, small
» M, small
» t, small
» t, small

Trade-offs among specs: decrease ¢, — increase M, etc.
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Formulas for T'D Specs: Rise Time 2ot 2o 2Ll
y()

14,

12f

10Ez=zzf==

08F

06f [

04f [

02f

— (Wpn f

I

I
Wntp Wnls, L

§ 10 12 14
Rise time ¢, — hard to calculate analytically.
Empirically, on the normalized time scale (t — w,,t), rise times
are approrimately the same

=
wpt, ~ 1.8 (exact for ¢ =0.5) 7
: : 1.8
So, we will work with ¢, &~/ — (good approx. when ¢ =~ 0.5)

w?l



Formulas for TD Specs: Overshoot & Peak Time

|
|
|
|
|
|
]
]
:
|
|
|
wntp  wats
8

0 12 14

t, is the first time t > 0 when v/(t) = 0

y(t) =1—e " (Cos(wdt) + 2 sin(wdt)>

Wd

2
% .
y' (1) = (—wd + wd> e 7" sin(wgt) = 0 when wyt = 0,7, 27, . ..



Formulas for TD Specs: Overshoot & Peak Time

We have just computed t, = —
W

To find M, plug this value into y(?):

o T
— exp (——) —exp | — ¢ : — exact formula
Wd V1 —¢?



Formulas for TD Specs: Settling Time

V(1)
14-

12f
1oE-zoof--
0.8}
0.6
0.4f
02f

—— Wy 1

:
|
|
|
|
|
|
|
:
|
|
_iWnly wpts
8

10 12 14

t/

t, = min {t > 0: y(*) — ; j>( )| < 0.05 for all ¢/ > t} (here,
[VARS®

y(oo) = 1)

ly(t) — 1] = e~ 7" |cos(wqt) + 2 sin(wgt)

Wd
here, e~ is what matters (sin and cos are bounded between
. n0.05 3
+1), so et < 0.05 this gives ts = — N —

g g



Formulas for TD Specs

H(S) = (U,,% 02 + wczi

s? + 2Cwns + w? B (s+0)% +w?




Second-Order Systems ' A

¥ 0
Im (jo)
A
> { >
" . X X s-plane
(¢=0) undamped (¢=1) crit damped
v >
-}bmw‘wi“ - :.\,» %wmm
U“'w-— X X X > Re (0)
}l‘f’) )-{’)
X X

> [ > 1

ve ?":}w R\
(0<¢<1) underdamped (¢>1) overdamped — (<°
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TD Specs in Frequency Domain

We want to visualize time-domain specs in terms of admaissible

pole locations for the 2nd-order system
w,,% o’ + w(zl
H{(s) 5 ’ 5 = 5 5
s° +2Cwps +wp (s +0)* + w;

where o = Cw,,
Wd — Wnv 1—§2

Step response: y(t) =1 — e ¢ (cos(wdt) - wid Sin(wdt))

Im
3

~ 7] wg =wpV1-— CQ
P 2> _ 2, 2
0= (Wn 0 Re Wy, =0 + W

( = cosy




Rise Time in Frequency Domain

Suppose we want t,. < ¢ (¢ is some desired given value)
1.8 1.8

tr =~ —<c — Wp = ——
Wn &

Geometrically, we want poles to lie in the shaded region:

Im
1.8
Wy = —
\ -
- Re
0

(recall that w,, is the magnitude of the poles)



Overshoot in Frequency Domain
Suppose we want M, < ¢

M, = exp ( \/;Tc"_2> <c — need large damping ratio
-G
N — e’

decreasing function

Geometrically, we want poles to lie in the shaded region:
Im
A
q . wWn G
\/1_<2 wn\/l_gz

o
— — =coty

Spf ‘ R e w(]

— need ¢ to be small

Intuition: good damping —
good decay in 1/2 period




Settling Time in Frequency Domain

Suppose we want ts < ¢

ts =

3 3
_S — Z_
o C

Want poles to be sufficiently fast (large enough magnitude of
real part):

Im

A

Intuition: poles far to the
left — transients decay
faster — smaller ¢,

Sla |l w
A

=

D




Questions

(a) The closed-loop transfer function is

Y (s) 12K

T's) = R(s) T 2+ 125+ 12K

The percent overshoot specification P.O. < 10% implies ¢ > 0.59.
From the characteristic equation we find that

w% = 12K and (w, =6".
Solving for K yields

2(0.59)V12K =12 which implies that K = 8.6 .

So, any gain in the interval 0 < K < 8.6 is valid. The settling time is
Ts =4/(w, = 4/6 seconds and satisfies the requirement. Notice that
T is not a function of K .



