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Industrial Control Systems

Chapter Four:
Transfer Function and Block Diagram
Modelling

Dr. Eng. Baha'eddin Alhaj Hasan
Department of Industrial Engineering
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-'s%Transfer function

input Olltpllt
- >

x(?) 0

Definition: The transfer function of a linear time-invariant

system is defined as the ratio of the Laplace transform of the

output variable to the Laplace transform of the input variable
when all initial conditions are zero.

Y (s)
- X(65)

G(s)



d _4Transfer function

Consider the linear time-invariant system described by the
following differential equation:

a s +d d" +-eeta d—y+a
Odt"y ldt"_ly el nY
m m—1
=b0d—x +D, d _1x+---+bm_1c£+bmx, n=m
dt” dt™ dt

By definition, the transfer function is

Y (s) bys" +bs" " +--+b s+b,
X(@) aps"+as" ' +---+a, s+a,

=G (s)



< Transfer function

The advantage of transfer function: It represents system
dynamics by algebraic equations and clearly shows the
iInput-output relationship:

Y(s)=G(s)X(s)

x(2) ¥(1)




Example. Spring-mass-damper system:

Let the input be the force r(f) and

Z the output be the displacement ()
Wall <. of the mass. Find its transfer
al < function.
friction, < | - | |
b S M Solution: The system differential
M l y equation is
r(t) Force 2
(£) Mdi’/t(t) dy(t) k() =r ()

From which we obtain its transfer function

Y(s) 1
R(s) Ms>+bs+k




ﬂTransfer function

Transfer function helps us to check:
= The stability of the system.

= Time domain and frequency domain characteristics of
the system.

= Response of the system for any given input.



g | Transfer function

Comments on transfer function:
= |s limited to LTI systems.

* |s an operator to relate the output variable to the input
variable of a linear differential equation.

= |s a property of a system itself, independent of the magnitude
and nature of the input or driving function.

= Does not provide any information concerning the physical
structure of the system. That is, the transfer functions of many
physically different systems can be identical.



Transfer Function of Physical Systems
(Electrical Systems)



TABLE 2.3 Voltage-current, voltage-charge, and impedance relationships for capacitors, resistors, and inductors

Impedance Admittance
Component Voltage-current Current-voltage Voltage-charge Z(s) = V(s)/I(s) Y(s) = I(s)/V(s)
_| e 1t dv(t) o1 1
v(t) = —/ i(t)dr i(t)=C v(t) = —=qlt) — Cs
Capacitor CJo dr C Cs
: 1 1
4\/\/\/— v(r) = Ri(z) i(t) = —v(1) v(t) = R R —=G
Resis R dt R
esistor
000 di(t 1 /! _ d*q(t
v(t) =L dt) i(t) = —/ v(r)dr  v() =L qf ) Ls 1
Inductor L Jy dr- Ls

Note: The following set of symbols and units is used throughout this book: v(f) — V (volts), i(f) — A (amps), g(f) — Q (coulombs), C — F (farads),
R — Q) (ohms), G — ) (mhos), L. — H (henries).



' Transfer Function of RLC Circuit

L R PROBLEM: Find the transfer function relating the capacitor voltage, Ve(s), to
~ 0000\ AN the input voltage, V(s) in Figure 2.3.

C i
\v./ T~
‘ Hil=-

FIGURE 2.3 RLC network

vee (1)

Summing the voltages around the loop, assuming zero initial conditions,
vields the integro-differential equation for this network as

di(r)
dail

L

l !
+ Ri(1) + (—/ i(r)dr = v(1) (2.61)
0

Changing vanables from current to charge using i(r) = dq(t) /dr vields

d*q(1) dq(r) 1 =
, — =y 2.62
l P + R T ‘ (.q(l) v(r) ( )
From the voltage-charge relationship for a capacitor in Table 2.3,

q(t) = Cvcl(r) (2.63)
Substituting Eq. (2.63) into Eq. (2.62) vields
d*ve dve(t

EC— ) + RC vetd) + velr) = v(1) (2.64)

dr’ dt



v~ Transfer Function of RLC Circuit

Taking the Laplace transform assuming zero initial conditions, rearranging terms,

and simplifying yields V(s) & Vel(s)
(LCs* 4+ RCs +1)V¢(s) = V(s) (2.65) TS R,
L IC
Solving for the transfer function, V¢(s)/V/(s), we obtain

FIGURE 2.4 Block diagram of

Vels) _ 1/LC (2.66) series RLC electrical network
Vi) o Ry 1 |
‘ L LC

as shown in Figure 2.4.



M Transfer Function of Electrical Circuits

For the capacitor,

V(s) = é](s) (2.67)
For the resistor,

V(s) = RI(s) (2.68)
For the inductor,

V(s) = LsI(s) (2.69)
Now define the following transfer function:

‘;(is)) — Z(s) (2.70)




Part-I

TRANSFER FUNCTION OF TRANSLATIONAL
MECHANICAL SYSTEMS



Transfer Function of Translational
Mechanical Systems

TABLE 2.4 Force-velocity, force-displacement, and impedance translational relationships
for springs, viscous dampers, and mass

lmpedeme
Component Force-velocity Force-displacement Zy(s) = F(s)/X(s)

x(1)

E/W o) f(r) =K [jv(r)dr f(r) = Kx(r) K

Viscous damper

—— x(1)

» » . dx(t)
H— f(0) F) =f,v() @) =f,—; f.s
1
Mass
—— x(1) \ ) ‘
ORATAT f(t) — Md‘:i(t) f(t) = Md-dx,gt) Mgz

Note: The following set of symbols and units is used throughout this book: f(f) = N (newtons),
x(t) = m (meters), v(t) = m/s (metem/second) K = N/m (newtons/meter), f, = N-s/m(newton-seconds/
meter), M = kg (kilograms = newton- seconds’ /meter).



Transfer Function of Translational
Mechanical Systems

ol b

Transfer Function—One Equation of Motion

—— x(1)

oo F(s) 1 X(s)
—_— 3 -
T Ms +fs+K
Ed ! FIGURE 2.15 a. Mass, spring,
fy and damper system; b. block
(a) (b) diagram

PROBLEM: Find the transfer function, X (s)/F(s), for the system of Figure 2.15(a).

M d°x(t) dx(r)

+f, o + Kx(t) = f(r) (2.108)

dr?

—t— x(1) —1— X(s)

KX(s) == 7000

fisX(s) =

FIGURE 2.16 a. Free-body
diagram of mass, spring, and
damper system; b. trans-

(a) (b) formed free-body diagram

Ms2X(s) <— ';-f




Transfer Function of Translational

¢ g Mechanical Systems

Taking the Laplace transform, assuming zero initial conditions,

Ms*X (s)+ f.sX(s)+ KX(s) = F(s) (2.109)

or

(Ms* + f,s+ K)X(s) = F(s) (2.110)
Solving for the transfer function yields

X(s) 1

G(s) = =22 —
) =T MR T s K

(2.111)

which is represented in Figure 2.15(b).



Transfer Function of Translational

¢ g Mechanical Systems

we obtain for the spring,

F(s) = KX(s) (2.112)
for the viscous damper,
F(s) =f,sX(s) (2.113)
and for the mass,
F(s) = Ms*X (s) (2.114)

If we define impedance for mechanical components as

E(s)

) =XG)

(2.115)




Part-I

TRANSFER FUNCTION OF ROTATIONAL
MECHANICAL SYSTEMS



Transfer Function of Rotational
Mechanical Systems

TABLE 2.5 Torque-angular velocity, torque-angular displacement, and impedance rotational
relationships for springs, viscous dampers, and inertia

Torque-angular Torque-angular Impedence
Component velocity displacement Zy(s) = T(s)/0(s)
1(r) 6(1)
Spring .
T(t) =K [, o(t)dt T(t) = Ko(r) K
K
Viscous 7(¢) (1)
damper 10(1
/\/\ T(1) = Doo(t) T(1) = D* 1(1) Ds
D
I(r) 6(1)
Inertia
do(t) d 0(t) "
=/ — Js-
5 =G 0T *
J

Note: The following set of symbols and units is used throughout this book: 7°(¢) — N-m (newton-meters),
0(t) — rad(radians), »(t) — rad/s(radians/second), K — N-m/rad(newton- meters/radian), D — N-m-s/rad
(newton- meters-seconds/radian). J — kg-m?(kilograms-meters® — newton-meters-seconds”/radian).



System Modelling Diagrams

o blek jn g Sysk ( blak youa=) i
O P famechsn

uls) \-1-1_.:_&3

(XY xesh)
(O ws)

In this lecture, we will introduce block diagram with which we can visualize the algebra represented by differential equations for a given
system, i.e., we can easily represent and analyze this system by means of block diagrams.

J diayo
wod ebiy

e
Large system Subsystems with smaller blocks
(—

decompose - \oy blo

compose

Usually, a system will be composed of subsystems with smaller blocks and these smaller blocks come from some given library. They are
used as building blocks for more complicated systems. (Think of Lego bricks.)



Building Blocks

y——r|1/s Y
(or sY') (or Y)
Figure 1: Integrator

_|_
u]_ =O > y
o — U1 — U2
U2
Figure 2: Summer
U a -y = au

Figure 3: Gain



Building Blocks

Example 1: Draw an all-integrator diagram for system dynamics

3j(t) = u(t) or equivalently s’Y(s) = U(s).

Solution: Recall the “chain” method we talked about before, leave the system output on the right and trace back
based on the degree of the highest order term of the differential equation. In this case it is 2, we need two
integrators.

1/s / dl/st——y

or equivalently in s-domain,




./

VA

Building Blocks

e

Example 2: By introducing two extra y(t) and y(t) terms to the left hand side of system dynamics of Example 1, we have a
new system dynamics

(t) + a,y(t) + agy(t) = u(t) <= s?Y(s) + a,8Y(s) +acY(s) = U(s),
1

or equivalently Y(s) = T rasta
s a8+ Qg

U(s).

Il-i i for th _ V() =V
Draw _an a mtegrator. diagram .ort. € new systfam . ) YIS) N q‘)‘LS)S X0, 4
Solution: Keep the highest derivative on one side and everything else on the other, 6 \/(5)

> T L ERACRAN ERE
j = —a1y — aoy +u. S5 N9~ e

= S [ $ Y% [ )T
V&)
+ Vv Y >
8 Ao
U—— y{1/s 1/s 2%
//i oL
i
L P a0
ai T L
ap |«

Compare the above new diagram with Example 1, the chain of integrators stays the same but we included two feedback
loops and one summing junction because of the two extra terms we introduced.



Series and Parallel Structure

\,\dﬁ"\/‘s
. coW .
&b
2 se.y/ %{W WCX\M
X K~
fL

U——| Gy | Go ——Y

Figure 10: Series connection




Series and Parallel Structure

U——+ Gy

D

Gol——Y

Figure 10: Series connection

[ —

G1Go

—Y

Figure 11: Series connection (reduced)



Series and Parallel Structure

A

G1

U—/ Y

e ’ L»
17 Q‘Us/o"o'_jf G2 — ef’” L~

Figure 12: Parallel connection

\

U—— G1+Go[—Y

Figure 13: Parallel connection (reduced)

system output Y(s) = G1(s8)U(s) + G2(s)U(s), i.e., the sum of two branches due to input U(s). We have the transfer function

— G1(s) + Ga(s).



Negative Feedback and Unity

Closed (scP 8osh

Feedback

BV A2

U’R’7G’1

v =R-w
w2 GeY
y = 6.V

= G L@-""’
o G R — G Qo ¥

Yt bz ¥z GuR

¥y L6 &) = S
[«
DR S
/ﬁ- \ GG

©

o

X

XQ\:;A \’»‘y\

+ ~U
R—( —
7

Coof D8i-

W

ﬂ;{ axd AN

Gy

W-'w‘d I f”‘ Shv

A

Go

Figure 14: Negative feedback

First we can compute the system transfer function from reference R(s) to output Y(s),

(2)

Solving for Y'(8) from Equation (2),

U-R-W,
Y =GU

— G (R-W)
— G1R— G G,Y.

Gi(s)

T 1+ G1(s)Ga(s)

R —»

G

1+ (321(::2

— Y

Figure 15: Negative feedback (reduced)



Negative Feedback and Unity
Feedback

It reads in natural language CER W80 g L0V

forward gain

negative feedback loop gain =

l@loopgain'
U
R %Q—’ G ~Y
W




Negative Feedback and Unity
Feedback

One special case of negative feedback is when G’2(3) = 1 or rather we move GQ(S) block from feedback path to forward path.
e (eop 2417

Gz
S ==
>z \ - Lq\ G?)L\\

pa
G -y f
: Y=z

B U

R—()—{ G5

1 P\ i c\&»—)

Figure 16: Unity feedback

7 £ ¥ L [‘\\G\»_L‘

This is called unity feedback —there is no component on the feedback path or feedback path is trivial 1. £

« R =Reference —» wuk abaske +%

U = Control input

Y = Output

E = Error

G4 = Plant (also denoted by P)

GG, = Controller or compensator (also denoted by C or K)



Negative Feedback and Unity
Feedback

Derivation of the following three very important transfer functions will be left as an exercise. (Apply formula we derived for gain of negative feedback
loop.)

« Reference R to output Y,

X  GiGy

R  1+GG,y’
« Reference R to control input U,

U__G

R 1+G,Gy
« Error E'to output Y,

Y

S G1G,. (no feedback path)



Block Diagram Reduction &Transformation

Now with the already discussed series, parallel, and feedback interconnections at our disposal, given a complicated diagram made up of some
combination of those blocks, we can possibly write down an overall transfer function from one of the variables to another.

In general,

Name all the variables in the diagram;

Write down as many relationships between these variables as we can;
Learn to recognize series, parallel, and feedback interconnections;
Replace them by their equivalents;

Repeat.



Block Diagram Reduction &Transformation

D) pes) o=
oot & - -
N Table 2.5 Block Diagram Transformations
s Pasised Transformation Original Diagram Equivalent Diagram
el .. .
bs 5¢ 0 1. Combining blocks in cascade X, - X5 Xz X X-
or
X X;
—_— GGy f—
2. Moving a summing point T2 St sy X 2= X, G = X2 G
behind a block G —> —_— G 2
‘2 Q L¥\"L y
A
PP
3. Moving a pickoff point X, X X,
ahead of a block — G > » G —>
X \{\9,"&‘*\ X Y2 =@ X
—_— — (|
4. Moving a pickoff point X, X X,
behind a block » G > > G >
X X 1 ]
—— — G
5. Moving a summing point - X, + X,
ahead of a block — G G —>
+
X
G|
6. Eliminating a feedback loop X, + X, X G X;

4}
Q
A 4
A 4
+I|
Q
X
A 4




8‘“"" béﬁf G Mi_) vy mulbigh by &
& ek behr @ Ko walkifly oy Vg

Sum aker G weesher behrg Yo multich by llg
B AWG

—_— X2 M iPlY \g G



Block Diagram Reduction &Transformation
]ﬂpb C \otek v

+
R(s) —oQ—oG,m

g '

(7ls)

cwsef gelice

? > Gyls)

L
Gyls) —L—'

5

H,(s)

-+

yp{;,fwgs cl'” 1/””‘ ' St

[oo)



Block Diagram Reduction &Transformation

Hyis)|
Gy |
- + + X +
Ris) Gy(x) | Gols) |Gs(s5) »| G5 > 10
- -
'{1(5' -
H.(5)|e
(a
H-(5)
Gs)
+ + X Gi5)G45)
Ris NG »|G.(5) ;/L »|G.(5) N it > M
T n p— - 1- G;'S)G‘(S”Il"l
Hs) e
(b)
RU) = Gl Go5)G(5)G (5) _ . R® G(5)G,(5)G ()G (5) Hs)
- ' | — Gy(5)G4)H(5) + GoAn)GyHAs) [ | | — Gi(5)G(5)H (5) + G(5) G5 () Ho(5) + Gy(5)G5),Go(5)G(5)H A 5)

His) |

c)

(d)



Block Diagram Reduction &Transformation

Reduce the following block diagram to find Y(S) / R(S):




Block Diagram Reduction &Transformation

-
R - - . | :ﬁIY S
()— - G 46%% G, |- g, @74>
Hl G2 "“"""'-----—————-->:Q

Solution:

1. Moving pickoff point A ahead of block G7

2. Eliminate loop | & simplify

B

{G+66, ——




Block Diagram Reduction &Transformation

R(s)+ + G, T G4 T Gz GS Y(f)
& oY
H.G, -
3. Moving pickoff point B behind block G,+G,G,
- =
RSt o v .
T 1 G, +G,G, ’

— (e +a)




Block Diagram Reduction & Transformation

4. Eliminate loop Il

R(s) + + G — G, +G,G, C 3/(8)
-1 - I+ H,(G,+G,G,)
G, 1,
G,+G,G.
R(S‘) + Gl(G4 + G2G3) )-/(Y)
_ T 1+GIG2H1+H3(G4+G2G3) Y
Y(s) G,(G, +G,G;)

1(s)=

R(s) 1+GG.H, +H,(G,+G,G)+G (G, +G,G,)



Block Diagram Reduction &Transformation

Reduce the following block diagram to find Y(S) / R(S):

: Wé}z’g\ﬂ.

Y(s)




Block Diagram Reduction &Transformation

Solution:
1. Moving pickoff point A behind block G4 7
R(s) T
! . Y ()
Q1 G R G, 0 Gy
‘ H, | ~
G,
+ H2
— T (;4
Hl




Block Diagram Reduction &Transformation

2. Eliminate loop | and Simplify
\7%?/&?15’“ ““““““““““““““““““““““““““““““““““““““““
R(s) F " A
- i ,
—( G,
/7~ feedback ,,/_ Not feedback
/i ar ()
G,G.G, H.—G.H,
1+G,GH,+G,G.H, G,




Block Diagram Reduction &Transformation

3. Eliminate loop Il & Il

R(s) + Y(s)
_X X G,G,G.G, A
1+G,G,H,+G,G.H,
H,-G,H,
G,
Y(s G.G,G.G
T(S): () 1727374

RGs) 1+G,GH, +GGH,+GGGH,-GGGGH



etermine the output C due to inputs R and U using the Superposition

Method. e Coorase
4
AAPMLG.:- i + & uis) ,EPF b
o Gy T QW —— s Y0y
Ul (s) + U}(J‘)"" Y « pA)
Step : PutU=0_7 .- "
Step 2: The system reduces to
C
R tf\ > G;Gg R =
T b

Step 3: the output Cr due to input R 1s Cr =[G,G,/(1 + G,G,))R.



Multiple Input System

U
+
C
4/& /;}3 'ﬁgy -Ve fe&! back
_l -
Step d4a: Put R=0.
Stepd4b:  Put —1 into a block, representing the negative feedback effect:
Rearrange the block diagram: U + , C
G,
Cy

Step 4c:  the output C;; due to input U is C;; =[G, /(1 + G,G,y)|U.



Multiple Input System.

Step S:  The total output is C=Cp + C;,

G,G, G,
R+ U
1+ GG, 1+ GG,

Gy
1+ G,G,

][G,R+ Ul



Multiple Input System

Determine the output C due to inputs R, U1, and U2 using the
Superposition Method.

) Ul Infak @
1npet © : +

Let U, = U, = 0.

Cr= [G,G,/(1 - G,G, H, H,)]R

where C, is the output due to R acting alone.



Multiple Input System

Now let R=U;=0.

Rearranging the blocks, we get

G,H,H, l‘

G = [62/(1 - G\G, H, H,)]U,

where C, is the response due to U, acting alone.



Multiple Input System

Finally, let R= U, =0.

Rearranging the blocks, we get
U,

20) - G,G,H, - | ”
\,{

|
G =[G\G,H, /(1 - GG, H H))]U;

where C, is the response due to U, acting alone.

By superposition, the total output is
1-GG,HH,

C=Cr+C+C=
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Stability of Control System

Y(s) bys™ + bis™" '+ -+ b, s+ b,
X(s) ays" + as”" 4+ -+ a,_ s+ a,

= Roots of the denominator polynomial of a
transfer function are called ‘poles’.
{

w
) Yo A

MOV ‘a—A

D, —

= And the roots of numerator polynomials of a
transfer function are called ‘ze[os’.

Fawe , EXe gy
/C;_L\

52



Stability of Control System

* Poles of the system are represented by x’ and
zeros of the system are represented by ‘0’

e System order is always equal to number of
poles of the transfer function.

* Following transfer function represents nt"
order plant.

Y(s) bys™ +bs™ '+ +b,_s+b,
X(s) ays" + as" '+ + a,_ s+ a,

53



Stability of Control System

* Poles are also defined as “it is the frequency at which
the system becomes infinite”. Hence the name pole,
where the field is infinite.

Y(s) bys™ + bis™" '+ +b,_s+b,
X(s) ays" + as" '+ +a, s+ a,

* And zero “is the frequency at which the system
becomes 0. ”

54



Stability of Control System

= Consider the Transfer function calculated in previous
slides.

o e T
X(S) C — Md,_c(s@v-\lx\

G(s) = =
Y (s) As + B

the denominato r polynomial IS As + B =0
= The only pole of the system is

55



Stability of Control System

= Consider the following transfer functions.

 Determine

* Whether the transfer function is proper or improper

 Poles of the system
» zeros of the system
* Order of the system

. S+3 .o
) G(s) = ?
s(s + 2) =5
2
i) G (s) = (s +3)
S(S2 +10)

.o Ky 57 =e
i) G (s) =
I (s +1)(s+2)s+3)
p, =~ f= —L fi=-2
2
iv) G(S):S (s +1)
s(s +10)

56



Stability of Control System

 The poles and zeros of the system are plotted in the s-
plane to check the system's stability. e Glsr - —S

(s ) (s )(Se 2y

Z)e0  F

[ . L= ©
Gible  jo e pae

F)a—l N

©

—o.os LHP RHP

Recall s =0 + jw

©

P
1<
Q

@

-5 -2\

s-plane
Cowp ke P lave.

57



Stability of Control System

= |f all the poles of the system lie in left half plane the
system is said to be Stable.

= |f any of the poles lie in the right half plane, the system is
said to be unstable.

= |f pole(s) lie on the imaginary axis, the system is said to
+ _ be marginally stable. e pobrar e s
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Stability of Control System

* For example

G(s) = , if 4 =1,B =3and C =10
As + B
I Y) is ferbance
* Then the only pole of the system lieat s
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Stability of Control System

= Consider the following transfer functions.

« Determine whether the transfer function is proper or improper
Calculate the Poles and zeros of the system

Determine the order of the system

Draw the pole-zero map

Determine the Stability of the system

NN i G (s) = -
) G (s) (s 1 2) ° (s +1)(s+2)s+3)
) 2
i) G (s) = s+ 3) v G(s) = - L D
S(S2+10) S(S-I—lO)
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Stability of Control System

'he system is said to be stable if for any bounded input,
the output of the system is also bounded (BIBO).

Thu, for any bounded input, the output either remains
constant or decreasese with time.

overshoot

/
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u(t) s

7

y(t)/

Unit Step Input
Output
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Stability of Control System

= |f for any bounded input, the output is not bounded, the

system is said to be unstable.

u(t) 1

7

>t

Unit Step Input

y(t) 1
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Stability of Control System

* For example

Y (s) 1 3¢ Y (s) 1
G, (s) = - c G,(s) = =
U(s) s+3 U(s) s-3
Pole-Zero Map Pole-Zero Map
4 E 4 ¢ T E
| unstable
3- stable : 3 |
2 | § 2
@ - © 1-
2 2
g 0% g 0 X
§'1‘ g-r
-2 2
3k 3
4+ : 4
-4 2 0 2 4 4 2 0 2

Real Axis Real Axis



Stability of Control System

* For example

G (5) Y (s5) _ 1 G.(5) = Y (s5)
U(s) s+3 U (s)

-1 Y -1 1
t G, (s)=1 ) =/ f_le(S): ! Y (s)
U (s5) s+ 3 U (s)

= y(t)=e u(r)

= y(t) = e 'u(r)




Stability of Control System

 For example
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9\’? 12 *
x 10 exp(3t)*u(t)
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Stability of Control System

* Whenever one or more poles are in RHP, the
solution of the dynamic equations contains
increasing exponential terms.

3t

e Such as -

* This makes the system's response unbounded,
and therefore, the overall response of the
system is unstable.



