Industrial Control Systems

Chapter Three:
Laplace Transform

Dr. Eng. Baha'eddin Alhaj Hasan
Department of Industrial Engineering
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¥ Linear Time-invariant Systems ~ %

7

Linearity: A system S is linear if it satisfies both

@ Homogeneity: If y = Sx, and a is a constant then
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How they can be both !

= A system can have dynamics (i.e., it's a dynamic system) but
still be time-invariant'if the laws that define its dynamics are
constant.

= For example, a simple RLC circuit with constant resistance,
Inductance, and capacitance is a dynamic system because its
output is described by a differential equation involving past
inputs. It is also time-invariant because the values of R, L, and
C are constant, meaning its response to a specific input will be
the same no matter when the input is applied.

= Conversely, a system that is time-variant has dynamics that
change over time, such as a circuit where the resistance
changes with temperature.



Laplace Transforms

OWY €ask Comtios Ot

 Important analytical method for solving linear ordinary
differential equations.

Application to nonlinear ODEs? Must linearize first.

 Laplace transforms play a key role in important process
control concepts and techniques.

- Examples:
= Transfer functions
= Frequency response
= Control system design

= Stability analysis



8 = Definition of Laplace Transform
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LU/ 0)=F()= [ f0edr "

* Convert time-domain functions and operations into
complex frequency-domain
4 f(t) > F(s) (teR,se()

< Linear differential equations (LDE) — algebraic expression
in Complex plane

“ Graphical solution for key LDE characteristics
“ Discrete systems use the analogous z-transform
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2. . Definition of Laplace Transform

time domain

Laplace transform

inverse Laplace
transform

algebra

Laplace domain or
complex frequency domain



Laplace Transform

Laplace transform converts time domain problems into functions of a
complex variable, s, that is related to the frequency response of the

system

Jw= jerf
system
respones
Laplace left half right half
Transf plune plane
(1) ranstorm g T
1 time
-jo= jenf

Time domain
lesson10et438a.pptx Complex frequenCD

Voo AP



Laplace Transform

Complex frequency combines transient response
Jw= jenf with sinusoidal steady-state response to get total
U response of system to input
d.
plune plane
it o
< ' G = exponential decay/increase constant that is
D, related to time constants of systems
transient response. RC = L/R = & in circuit
analysis
- jo= jenf
e” Exponentially increasing function over time
a.) Higher frequency e Exponentially decreasing function over time

b.) Faster time constants



Laplace Transform

The radian frequency ® = j2ntf same frequency used in phasor
analysis

Laplace related to sine response through Euler's Identity.
Euler's relates complex exponentials to sine and cosine time
functions

jot

e’ =cos(mt)+ j-sin(wt)

—jot

e ' =cos(mt)—j-sm(wt)

Adding and subtracting the above relationships gives the
exponential forms of sine and cosine




Laplace Transform

Add the identities Subtract the identities

e’ = cos(wt) + J-sin(ot) e’ = cos(ot) + j-sin(ot)

e = cos(ot) - j-sin(ot) e " = cos(ot) — j-sin(mt)

ejo)t 4+ e—jcot — 2 . COS(CDt) ejcot —Jcot 2] Sln((l)t)
et e f o g e

= cos(mt) %

Exponential form of Cosine Exponential form of Sine

' Laplace can give complete response: dc
Since e e(G+J(D)t _ ect Lot P . g P . P .
transient and steady-state sinusoidal



Time Domain Function

o(t) Impulse

u (t) UnitStep |

sin(ot) !

cos(mt) |

t Linear ramp (slopel) |

Laplace Transform

Laplace Domain Function

q/c( °o

Note: time functions
multiplied by constants give
Laplace function multiplied
by constant

Examples:

S5cu(t) — >
S

| 4
3.sin(4t) — 3- 4
sm(4t) (sz+16) ®
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Laplace Transform for Elementary Functions

1) x(t) = 6(t) Impulse signal
. oD >
Solution
c =3

LIB®] = | s0ear P

* 8() = {O fort =0

=e300) _ 4

2) x(t) = u(t) Step signal

Solution
. ll(t) - {1 fort =0
- ® 0 fort<0

u(t)e stdt = f
0

e St1” 1
le Stdt = [ I = -
=3 "

Lu(] = f

0



Laplace Transform for Elementary Functions

3) L(l) = 1; Constant
Solution

L(l)= ]Ee“".ldt - fﬁ']“ = > (s >0)
o [‘sJo s

1
4) L(e“)=: Exponential signal

Solution

B i -(s-a)t - 1
L(e*) = Ie * eMdt =I e~imaidt = |— ¢ ] = ——if s >a
0 . I.— (53— aj Jo S-a

11111



Laplace Transform for Elementary Functions

l
s+a

5) Lle*]=

,$>-a Exponential signal

6) L[sinhat]=

s - a2

Solution

eat _e-ar

7

. (en— e
L(sinh at)= IJ{

at | . .
- )|=5[L(e )—L(e )]

1l 1 1] a

s> a|

-~ b

Ell_s—a st+al g3. 3?



Laplace Transform for Elementary Functions

7 S eal+e-ax
) L[coshat]= ——,s>(a| Hint coshat=——
s‘-a‘ =

8) x(t) =cos w, t u(t)

ctcoswuml-%ae""u(mewum]

| | | s
= — + -
le-jw, s+ja,| s+

9) x(t) = sin wy, t u(t)



Laplace Transform for Elementary Functions

. a S
8) L[sinat]= -s-§+—azand L[cosat]= §2+—a2.s >0

Solution
Using Euler’'s Formula
e’ =cosaf +isinat ---> (1)
= | '
L[cosat +isinat] = L[e™]= — a(s"”.a)
s—ia (s+ia)
- S . a
= =t —>()
Compare (1) and (2) S* +a S* +a S* +a-

: . a
Imaginary part L[sinat]= ——

Real part L[cosat]=




Laplace Transform for Elementary Functions

9) Rectangular Pulse Function

It 1s defined by:

(0 for £<0
f(t):<h for 0<r<t¢, (3-20)
0 for t2>1,




Laplace Transform for Elementary Functions

h Fio = i: NICRES

Co = h géﬂ * e

f(t) SN L/% C}

R E,LS_ o Jc?(l
b= éw’)
tW
Time, ¢

The Laplace transform of the rectangular pulse is given by
:Kmdriw

F(s)= ﬁ(l—e‘fws) (3-22)

S



Laplace Transform for Elementary Functions

Match the following time functions to correct Laplace domain

function using the transform pairs.
(

a) 10t fes s . b

S+2 S—3
o0l
b.) t°e_at@ é‘@/?’— OE
S 2
. o) @ :
) e (3
|
d.) e_Zt / Q (s+a)2



Laplace Transform for Elementary Functions

Match the following time functions to correct Laplace domain
function using the transform pairs.

a4y 10t 1 1
O S+2 O s—5

10

O

_at Laplace table
b) t-€ 3.2 textbook

a et © (SZSH)JO
|
d.) e_Zt O Q (s+a)2




Laplace Transform for Elementary Functions

f(t) F(s)
o(t) 1
2 o(t — a) e
3 o (t) %
4 tug (t) Siz
n n!
5 t " ug (t) g
. 1
6 e Ug (t) sta
B n!
7 t"e *uy(t) (s + a)nt!1
w
8 sin(wt)ug () 2w
S
9 cos(wt)ug () 2w
><t w
10 6(91 sin(wt)uo (t) (3 @—01)2 + w2
v s+a
11 2% cos(wt)ug (t) (s0a)y +




Laplace Transform Therorms

Laplace of an unknown function

Capitalize unknown function name

g(fl (t)) - Fl (S) Replace t with s

Examples

£(i,(0)=1,(s)
(v, (1)) =V, (s)

Linearity of transform - can multiply by constant

If  £(f,(1)=F(s) and £(f,(1))=F,(s)

Then £(a-f,(t)+b-f,(t))=a-F(s)+b-E,(s)



TransYer Conckion-.

GG suby = |
(973 s X'o
s i[o&?\&w’“’& Sev) Gploce b Linaur &if2 e ot deo pdh ( a é‘ﬁ_ A~ b é;i:} o x =D VDE o fiwewr &t
ﬁ C Trpuk of e toct L it ’i % ey

® Tkv&’?«r Rurchion ouly defined 'epf
DY
}(LS') T(o\vg‘f.er ’eW!/I;Sv ‘ —

® Tineg for Bamchion olueys (epreyels ik -obpuk  fRlalion  whem (Ol v bl on X oge @

@® DanPer Chok olysorper)

Q%"J 4 ® _;
7 T m
.
? slowtr Tggps  fon v Gpiiy.

° by
sl tipe dopgan R - Qowsra N
MAh~x Wxx px = :Lm [C SN :ng 2 e
m R = § by~ K
X ’\Tﬂ (P bi-xp m (8K - sMY = Xy & K xls) xolsKo — XB)=res
KW Cmg> 4bsaU3 =Foy « Lmsyh) X9 xm K W
i’@—\.\}_—x—.@ L Qlo = *ry9 o |
L,_Aj e p5’> 05 xR
?;é Fo N\
MKk




Laplace Transform for Drivatives

Laplace Transform turns derivative into multiplication by s

If  £(f®)=F) /

Then 53(%1‘1 (t)) =s-F (s)—1,(0)

For higher order derivatives O initial conditions reduces formula to
d’ d d’
d_zf(t) =s-(s-F(s)— f(()))— f(O) L d—f (t) |=s"-F(s)



Laplace Transform for Integrals

Laplace turns integration into division by s

If  £(f(t)=E(s)

oo
Then £“%fl(t) dt] = é.Fl(s) \m\\;ﬂ; ‘% O

Examples from circuit analysis:

Capacitor voltage £(va()= ££% -jic (1) dt)

vc(t)%-jic(t)dt VC(S):%( jus) [ 1 }us)



éng 5\/4%'}“
Laplace Transform for s and t shifting

q}m Q¥

LleZ f(D)](s) = F(s—a)

Example:
S

L{cosbt]=—

s* + b

S—d

= L[e” cosbht]= —
[((s—a)” +b7]

L [H(t —a)f(t- a)] (s)=e “F(s)
L'e“F()I=H(-a)f(t-a)

L'[FGl=f*g



Laplace Transform Initial and Final Values

Initial and Final Values

The initial-value and final-value properties allow us to find the initial value #0)and
f{e)of ft)directly from its Laplace transform F(s).

f(0) =!LIE sF(s) Initial-value theorem

f(0) =limsF(s) Final-value theorem
s=0



The Inverse of Laplace Transform

Suppose F(s) has the general form of

Parbod
Crpurg) o

N(s)......numerator polynomial

F(s) =

B D(s)...denominator polynomial

The finding the inverse Laplace transform of F(s) involves two

steps: @’

1. Decompose F(s) into simple terms using partial fraction
expansion.

2. Find the inverse of each term by matching entries in
Laplace Transform Table.

ODE _j’_‘ Alaebric
wb

-1
SolHon R k So\ue dor
A A VRV

(5}

RS T AN
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The Inverse of Laplace Transform

Example 1
Find the inverse Laplace transform of

F(s) =2 ——+—°
s s+1 s +4
Solution:
3 5 6
)=L'|=|-L'|—|+L"'
7@ s] s+1 s’ +4

=(3- Se¢”" +3sin(2t)u(t), t=0



The Inverse of Laplace Transform

L AD Q(":‘L\:?/D 5" oY) s 2\ \;/[

PARTIAL FRACTION EXPANSION ~ —flreiod

[Poly Pt

1) Distinct Real Roots of D(s)

$=0,s,=-8
S,= -6




The Inverse of Laplace Transform

1) DISTINCT REAL ROOTS
96(s +5)(s+12) _K, _ K, . K,

F(s) =

sS(s+8)(s+6) s s+8 s5+6

® To find K,: multiply both sides by s and evaluates both sides at s=0
® To find K,: multiply both sides by s+8 and evaluates both sides at s=-8

® To find ¥_: multiply both sides by :+& and evaluates both sides at <=-&



The Inverse of Laplace Transform

FIND K

96(s +3)(s+12)| _ ., K; g Ksf

(s+8)(s+6) |, = 548l ?gzo
K =200 _inp

(8)(6)



The Inverse of Laplace Transform

FIND K,

96(s +5)(s +12)

(s+8) o, Ki(s#9)

s(s +6) I/s(s+6)| /(5’+6)|

k. =26C 3
(-8)-2)

=-72




The Inverse of Laplace Transform

FIND K,




The Inverse of Laplace Transform

INVERSE LAPLACE OF F(S)




The Inverse of Laplace Transform

2) DISTINCT COMPLEX ROOTS




The Inverse of Laplace Transform

PARTIAL FRACTION EXPANSION

¥'Complex roots appears in conjugate pairs.



The Inverse of Laplace Transform

FIND K,




The Inverse of Laplace Transform

FIND K, AND K,

/ Coefficients
/' associated  /
/" with conjugate/,
- pairs are
themselves
conjugates.




The Inverse of Laplace Transform

INVERSE LAPLACE OF F(S)
Fl) = 100§s +3)
(S+0)(s +065+25)

=12 y 10£- 53.13° s 1025313
s+6  s+3- j4 s+3+ j4




The Inverse of Laplace Transform

INVERSE LAPLACE OF F($)

-

(=12 10737
+

4

loej53.l3° i

§+6 s+3- j4

Si+3+ j4

—
’— ~~~

=(_ 12 +1Q€-j53.13 e G I

R S ™ ol i -,

+/1/O/ej53.]3°

-

e ”T‘ﬁ’/\)u (1)

—
. amm



The Inverse of Laplace Transform

USEFUL TRANSFORM PAIRS
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Operational Laplace Transform

OPERATIONAL TRANSFORMS

®  Indicate how mathematical operations performed on either f(t) or F(s)
are converted into the opposite domain.

®  The operations of primary interest are:
Multiplying by a constant
Addition/subtraction

Differentiation

Integration

Translation in the time domain
Translation in the frequency domain
Scale changing



Operational Laplace Transform

OPERATION f(t) F(s)
Multiplication Kf (1) KF(s)

by a constant

Addition/ ' (4) - -
Subtraction | /1O O+ F(s)+F(s)- Fi(s)+
First df(y

derivative . sF(s)- f(07)

(time) o

Second 2 X _ (0
derivative . (%2 sF(s)- of (07)- YO %1,

(time)




Operational Laplace Transform

OPERATION

ft)

F(s)

n th derivative
(time)

d"(ry
d’n

s"F(s)-s""f(07)- s

3df” (0)

-2df (0 y
LA (0/

Time integral

[£ ()

F (s%

Translation in

. f(t- a)u(t- a), e “F(s)
time 4>0
Translation in 0 F(s +a)

frequency




Operational Laplace Transform

OPERATION fit) F(s)
Scale changing f(at),a>0 %, F (%)
E;St derivative 70 _dF (S%g
n th derivative £ (6) -1y 94 F (% )
s integral / °(f% ]F(u)du




Operational Laplace Transform

TRANSLATION IN TIME DOMAIN

If we start with any function:

we can represent the same function translated in time by the constant

o f(t- au(t- a)

In frequency domain:

f(t- a)u(t- a) =e “F(s)



Operational Laplace Transform

EX:
L[tu(t)] :%2

41
Ll- aw(- a)] ="/,

S




Operational Laplace Transform

TRANSLATION IN FREQUENCY DOMAIN

Translation in the frequency domain is defined as:




Operational Laplace Transform

EX:

S

s+

. !

L[e' “coswt| =

L[cos a)t] -

2

S+da

(s+a)’ +w’




Operational Laplace Transform

EX:

S

COSZ

S+1

:
el




Table 3.1 Laplace Transforms for Various Time-Domain Functions?

f(t)

F(s)

. 8(f)  (unit impulse)
. S(t) (unit step)

;i (ramp)

: tn—l

(s + b)"
-
(s +1)°
1
(s + by)(s + by)




Table 3.1 Laplace Transforms for Various Time-Domain Functions?

f(£)

F(s)

10.

11.

2. =

1.

14.

15.

16.

17.

18.

19.

1 (e—ll'.-, . e*'/"z)

T — T2
b3 s bl e-h.l + b3 e bz e—hZ'
by — b[ by — bZ
T|'l'l—'|'2 721'2—1.1
1 — e-—l/-z
sin !
COS wi
sin(wt + )
e~ sin wt )
- b, » real
e~ cos wt
._.1___.e Uk sin (J1 — 2 ti7)

w1 —
O=lf<1)

1
(rs + 1)(7s + 1)
s+ b3
(s + by)(s + by)
T3S + 1
(1ys + 1)( s + 1)
1
s(ts + 1)
)

s2+w2
S
s2+<.o2

wcos ¢ + ssin

s + w?

®

(.s‘+b)2+w2

i s+ b

| (s + b)* + o
1

s> + 2rs + 1




Table 3.1 Laplace Transforms for Various Time-Domain
Functions? (continued)

f(t) F(s)
1 —1f —tl7Ty — 1
2. 1+ 5= me™ — e ) s(ms + 1)(ms + 1)
(1 # 72)
. 1
B \/Tl——@ e 4k sin [V1 — Lt/ + ] s(7s% + 2Lws + 1)
§ = tan™! .12;—53, O0=lgf<1)
. 1
22. 1- C’_L'/T[ cos (V1 — ¢ tlr) s(v?s* + 2Lrs + 1)
\/~__. sin (\/1———@_“ ti7)]
0=l <1)
Tty . 372y, 735 + 1
. lJr"'1“"’2(3 +72"’Tle s(tis + 1)(72s + 1)
(m1 # 72)
24. g{ sF(s) — f(0)
2. 24 S"E(s) = " 1f(0) — 5" 2F(0) — -
o sf("_z)(O) 2 f(n—l)(o)
26. f(t — t0)S(t — 1) e " F(s)

Note that f(t) and F(s) are defined for # = 0 only.



Example 3.1

Solve the ODE,

sy
dt
First, take L of both sides of (3-26),

5(SY(S)—1)+4Y(S) :%

+4y=2 y(O) =1 (3-26)

Rearrange,
Ss+2

Y(S) N S(SS + 4)

Take L, J(1) =L  59+2

_S(5S+4)_

(3-34)

From Table 3.1 (line 11),

y(£)=0.5+0.5¢7"% (3-37)




o Example 3.2: Y —4y=L »(0)=1

L[y —4yl(s) =L[Y'1(s) —4L[y](s) = (sY(s) — y(0)) —4Y(s)
=(s—4)Y(s)—1
L[1)(s) =~

S

1 1 1
(s=HF()-1=1, () =sgt s

y:Ll[Y]:Ll[ I + I }zL‘l[ I }+Ll[ I }
s—4 s(s—4) s—4 s(s—4)

From Table 3.1, entries (5) and (9)

. _L eat_ebt _ 1
G Hetl=—2 & U = a6 —n

y(l'):e4t+%(e4t_1):§€4r_l

4 4




Example 3.3:
L‘l_ u }:Ll_ ! _
57 +4s+20 (s+2)°+16
. . . 4
.+ L[sinat] = ———, L[sin4t]=—
s*+a’ s*+16
. 4
L[e ™ sin4t] = .
(s+2)" +16
g L_l_ 4 _ =e ' sin4t
(s+2)°+16




Factoring the denominator polynomial

2

3s* +4s+1

3s” +4s+1:(3s+1)(s+1)=3(s+%)(s+1)

From 9 in the table, Transforms to ets3- et

Real roots = no oscillation

s [l &



2+s

s*+s5+1

) 1B 1 B 1, By

S +s+1—(s+5+7])(s+5—7 )—(s+5) +(7)
V3 V3

Transforms to e ' sin - t, e ' cos - t

Complex roots = oscillation

V3 1
L'[V3( 2 NERRAL ZI )]

1., 3, 1., 3,
(S+§) +(7) (S+5) +(7)

From Table 3.1, line 17 and 18

V3

() = ¢ (sin(g H+/3 003(73 1))



EXAMPLE 3.5

Find the inverse transform of

YO =% i Bf: 1) (3-72)
SOLUTION
Equation 3-72 can be split into two terms:
Y(s)=Y,(s)+ Y,(s) (3-73)
25

_ 1 e
S @ DG+ @D+ D)

The inverse transform of Y,(s) can be obtained directly
from Table 3.1:

(3-74)

=t - (3-75)

Because Y,(s) = e=>Y,(s), its inverse transform can be writ-
ten immediately by replacing ¢ by (¢ — 2) in (3-75), and then
multiplying by the shifted step function:

Yo () = [e7P/% — D51 - 2) (3-76)
Thus, the complete inverse transform is
yOy=e "t — P 4 [P = e DPIS(1 - 2)
=y, (1) + y,(1) (3-77)



3.16 (a) The differential equation

d’y , ody

6L

ar i

has initial conditions, y(0) = 1, y'(0) = 2. Find Y(s) and, with-

out finding y(t), determine what functions of time will appear
in the solution.

(b) If Y(s) =

+ 9y = cost

s+1

, find y(1).
s(s2 +4s + 8) nd y(?)




Take the Laplace transform:

[S2Y(S) —s5v(0) — y'(O)]+ 6[SY(S) — y(O)]+ 9Y (s5) = 21 1
S
(s + 65 + 9)Y(s) — (1) = 2 —(6)(1)= ———
s™+1
(s + 65+ NV(s) = ——+5+ 8
s +1
(2 + 65 + 9)¥(s) _s+s +5+8s° +8

s +1



s*+8s7 +25+8
(s+3)°(s* +1)

Y(s)=

To find y(7) we have to expand Y(s) into its partial fractions

A B Cs D
Y(S‘): 9 + + 9) _ + 9) .
(s+3)" s+3 s +1 s°+1

W(f) = Ate”'+ Be™' + C cost + D sin ¢



s+1
s(s” +4s +8)

b)  Y(s)=

2

Since — < &, there are complex factors.

. complete the square in denominator

2+ 4s+8=s5*+4s+4+ 84

=st+4ds +4+4=(s+2)*+ (2) {b=2, &=2}

. Partial fraction expansion gives

B(S+2) C 3 s+1

Y(S)_ 9 - )
S 3 +4S+8 s +4s+8 s(s”+4s+3)




Multiply by s and let s—0
A=1/8
Multiply by s(s*+4s+8)
A(s*+4s+8) + B(s+2)s + Cs=s+ 1

As* +4A4s + 84+ Bs* +2Bs+ Cs =s + 1

52 A+B=0 — B=-— =—%
L. _ _ 1 1) 3
S 4A+2B+C=1 — C=1+2|=|-4|=|=—

8 8) 4
sV 84 =1 —> A = % (This checks with above result)



Y(S)=1/8+(—1/8)gs+27)+ 3/24 7
S (s+2)"+2° (s+2)"+2°

1 1 3\ .. .
N=1|=|—=|=|e?cos2t+| = |e? sin 2t
o (Sj (8j (8j
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