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Linear Time-invariant Systems





Linear Time-invariance Systems
How they can be both !
 A system can have dynamics (i.e., it's a dynamic system) but 

still be time-invariant if the laws that define its dynamics are 
constant.

 For example, a simple RLC circuit with constant resistance, 
inductance, and capacitance is a dynamic system because its 
output is described by a differential equation involving past 
inputs. It is also time-invariant because the values of R, L, and 
C are constant, meaning its response to a specific input will be 
the same no matter when the input is applied.

 Conversely, a system that is time-variant has dynamics that 
change over time, such as a circuit where the resistance 
changes with temperature.



Laplace Transforms

 Important analytical method for solving linear ordinary
differential equations.

Application to nonlinear ODEs? Must linearize first.

 Laplace transforms play a key role in important process  
control concepts and techniques.

- Examples: 

 Transfer functions 

 Frequency response

 Control system design

 Stability analysis



Definition of Laplace Transform
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Laplace Transform for Elementary Functions

9) Rectangular Pulse Function

It is defined by:
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Laplace Transform for Elementary Functions
h
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The Laplace transform of the rectangular pulse is given by
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Laplace Transform Therorms





Laplace Transform for Drivatives



Laplace Transform for Integrals



Laplace Transform for s and t shifting
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Laplace Transform Initial and Final Values
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Table 3.1  Laplace Transforms for Various Time-Domain Functionsa

f(t) F(s)



Table 3.1  Laplace Transforms for Various Time-Domain Functionsa

f(t) F(s)



Table 3.1  Laplace Transforms for Various Time-Domain
Functionsa (continued)

f(t) F(s)



Example 3.1
Solve the ODE,
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First, take L of both sides of (3-26),
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。 Example 3.2:

From Table 3.1, entries (5) and (9) 
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Example 3.3:
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Factoring the denominator polynomial
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From 9 in the table, Transforms to e-t/3- e-t

Real roots = no oscillation
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