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8 &< Types of Systems

= (Static'System>If a system does not change with time, it is
called a static system.

= Dynamic'System?|f a system changes with time, it is
called a dynamic system.



$ = Dynamic Systems

= A system is said to be dynamic if its current output may

depend on the past history as well as the present values
of the input variables. fie

= Mathematically:
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u:Input,s: Time
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Example: A moving mass

Model: Force=Mass x Acceleration u

My = u
Ay = u
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.%Ways to Study a System

Experiment with actual | Experiment with a
System model of the System

A

Physical Model ‘\L|—> Mathematical Model

Analytical Solution

A
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Simulation
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Frequency Domain Time Domain Hybrid Domain
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S Model

"Dictionary.com" defines a model as "A systematic
description of an object or phenomenon that shares

Important characteristics with the object or phenomenon.’
nol olf Chan cl—ef,'b)?'%_

S0, models present a systematic, and most often
simplified description of what they represent.

| asbect  Je ser (phisw
Such a description is a helpful instrument to study the
characteristics of what the model represents.
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= A model is a simplified representation or abstraction of
reality.

= Reality is generally too complex to copy exactly.

= Much of the complexity is actually irrelevant in problem
solving.



% = | Mathematical Model

h< .
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A set of mathematical equations (e.g., differential egs.)

that describes the inpyﬁ’&-output behaviour of a system.
St ok

Mathematical models of physical systems arekey

elements in the design and analysis of control systems.

The dynamic behaviour is generally described by ordinary
differential equations.

The differential equations describing the dynamic
performance of a physical system are obtained by utilizing
the physical laws of the process



g | Mathematical Model

= What is a model used for?

»  Simulation
 Prediction/Forecasting

* Prognostics/Diagnostics

» Design/Performance Evaluation

» Control System Design



= . Black Box Model

= When only input and output are known.
= Internal dynamics are either too complex or unknown.
= Easy to Model
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=~ . Grey Box Model

= When input and output and some information about the
internal dynamics of the system is known.
= Easier than white box Modelling.
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g = . White Box Model

= When input and output and internal dynamics of the
system is known.

= One should know have complete knowledge of the system
to derive a white box model.
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Six Step Approach to Dynamic System Modeling

= Define the system and its components.

= Formulate the mathematical model and list the necessary
assumptions.

= Write the differential equations describing the model.
= Solve the equations for the desired output variables.
= Examine the solutions and the assumptions.

= |f necessary, reanalyse or redesign the system.



Mathematical modeling of Physical Systems
(Electrical Systems)



Basic Elements of Electrical Systems

Symbol »  —AAAN—

= The time domain expression relating voltage and current for
the resistor is given by Ohm’s law i-e

vp(t) =i, ()R

= The Laplace transform of the above equation is

Vi (s)=1 R (s)R
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Capacitor
= The time domain expression relating voitage ana current for

the Capacitor is given as: %S‘P
] e
v.(¢) = Ve [i.()dt WP

= The Laplace transform of the above equation (assuming
there is no charge stored in the capacitor) is

v (s) = —1.(s)
Cs



Basic Elements of Electrical Systems

Inductor

Y Y Y

= The time domain expression relating voltage and current for
the inductor is given as:

di, (t)
dt

v, (t) =L

= The Laplace transform of the above equation (assuming
there is no energy stored in inductor) is

V,(s) = LsI, (s)



V-l and |-V relations

Mgl
Symbol V-l Relation I-V Relation

Resistor _JVVV\I—_ VR(t) — iR(t)R iR (t) _ Vp (l‘)

dv,(t)
dt

Capacitor —| I— V. (1) = %jic (¢)dt I, (t)=C

Ji
Inductor YLy (@)=L lf:) iL(t)=%va(t)dt
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Figure 1: Schematic Diagram of the RC Circuit Configuration
Step 1: Applying Kirchhoff's voltage law (KVL) to the series RC circuit, we can write:
1{" = VR + %ut
Step 2: Expressing the voltages using Ohm's law :
V,=I1*R+V,

out

I
Step 3: Substituting | with " dt
dV.
l{n = (C*%)*R-"V;ut

Step 4: Rearranging the equation and dividing both side with RC

av,,. 1 1

I T T

Step 5: Defining the time constant © = RC

av,,. 1 1

4 Tt =7

Step 6: Differential equation (Time domain)
AVoue

Tx dt = l{n - l/Out
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Egv %_ Ve R
- VC -

o |

Vr=Ri C
and An RC series circuit
1 /.

VC = E/Zdt

Kirchhoff's voltage law says the total voltages must be zero. So applying this law to a series RC circuit results in the equation:

Rz'-i—%/idt:V

One way to solve this equation is to turn it into a differential equation, by differentiating throughout with respect to ¢:

di {
RE—'—E:O

Solving the equation gives us:

.V
i — L o—t/RC

R




': ;‘g RC Circuit

If P= P(x) and Q = Q(x) are functions of  only, then

dy
EJFPZ/—Q

is called a linear differential equation order 1.

We can solve these linear DEs using an integrating factor.

For linear DEs of order 1, the integrating factor is:

edew

The solution for the DE is given by multiplying y by the integrating factor (on the left) and multiplying Q by the integrating factor
(on the right) and integrating the right side with respect to x, as follows:

yel Pds :/(Qedex)dm LK



We start with:

di i
R+ =0

Divide through by R:

di 1 ). _o
i \mc)'™

Identify Pand Q:

1
P=%c
Q-0
Find the integrating factor (our independent variable is t and the dependent variable is 2):
1 1
/Pdt :/RCdt:Rt
So
IF = €'/R¢

Now for the right hand integral of the 1st order linear solution:

/Qefpdtdt:/Odt:K



3 Lo .
g~ 4 RC Circuit

Applying the linear first order formula:

ie'/R¢ = K
Since 1 = I whent = 0:
vV
K= —

R

Substituting this back in:

. t/rc
e R

Solving for ¢ gives us the required expression:

|4
i — _e—t/RC

R
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> 2 RC Circuit

The time constant in the case of an RC circuit is:
1= RC
The function

V
i — L t/RC

R

has an exponential decay shape as shown in the graph. The current stops flowing as the capacitor becomes fully charged.

.V _wre
Graph of i = —e (¢/FC)
P R

,an exponential decay curve.

Applying our expressions from above, we have the following expressions for the voltage across the resistor and the capacitor:

Vg = Ri=Vet/EC

Ve = %/z’dt :_1;’_(1 _ e—t/Rc)
&

(PN
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£ RL Circuit
T
L

The RL circuit shown above has a resistor and an inductor connected in series. A RL circuit diagram

constant voltage Vis applied when the switch is closed.

The (variable) voltage across the resistor is given by: At oy
b firg order
. \» cecarl o dar
VR — zR @]nhﬁfa’b’u*

The (variable) voltage across the inductor is given by:

da

VL:Ldt

Kirchhoff's voltage law says that the directed sum of the voltages around a circuit must

be zero. This results in the following differential equation:
di

The solution of the differential equation Rt + L i Vis:
dz
Ri+L% v .
s .~ (R/L)t
dt i=g(1-e @)

Once the switch is closed, the current in the circuit is not constant. Instead, it will build
up from zero to some steady state.



We start with:

dz

Rz+Ldt

=V

Subtracting Rz from both sides:

du :
LE—V—Rz

Divide both sides by L:

di V- Ri
dt L

Multiply both sides by dt and divide both by (V- R2):

di _dt

V-Ri L

/ i ﬂ
V - Ri L
In(V-Ri) 1

— R —Lt+K

Now, since 2 = O when t = 0, we have:

InV
K=-—F7"

@:ln|u|+K
u

/

de =In |f(z)| + K

f(z)




Substituting K back into our expression:

‘In(V-Ri) 1, IV

R T L R

Rearranging:

mV In(V-Ri) 1

—t
R R L Multiplying both sides by — (%)
Multiplying throughout by - R:
V ,.
) — — ]_ — e (R.v"L)t
4nv+mw>Rn=_§t R( )

Collecting the logarithm parts together:

V - Ri R
In — ¢
() -1

Taking "€ to both sides™

V — Ri e (R/L)t
|4

R ,.
1-Ti=e (R/L)t

Subtracting 1 from both sides:

= 14 R
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S RLC Circuit 50 | = o C

L
Consider a series RLC circuit (one that has a resistor, an inductor and a capacitor) with a constant driving electro-motive force
(emf) E. The current equation for the circuit is gk NeOd Vel » Wl =
di 1 . \ L W« L)
LE+Rz’+5/z’dt:E s R A R T e

di 1
This i ivalent L— +Ri+ —q=F
is is equivalent: L — 1+ 54

Differentiating, we have

d2i d 1 0
hadf JUN
dt C

o

R sy o=
d¢




£~ RLC Circuit

The general form of the second order differential equation with constant coefficients is

d~ dy
+bd:13 + cy = Q(x)

where a, b, ¢ are constants with @ > 0 and Q(z) is a function of z only.

Homogeneous Equation
In this section, most of our examples are homogeneous 2nd order linear DEs (that is, with Q(z) = 0):

d2y

dy
a b—+cy:0

dx



&% RILC Circuit

Method of Solution

The equation
am?+bm+c=0

is called the Auxiliary Equation (A.E.)

The general solution of the differential equation depends on the solution of the A.E. To find the general solution, we must determine
the roots of the A.E. The roots of the A.E. are given by the well-known quadratic formula:

o —b £ V/b% — 4dac Nature of roots Condition General Solution
2a 1. Real and distinct roots, | S o
b — 4ac >0 y = Ae"™" 4+ Be™
mq, Mo
2. Real and equal roots, m | b*> — 4ac = 0 y=¢e""(A+ Bz)
3. Complex roots
m;=a + jw 2 azr :
b* — 4ac < 0|y = e**(Acoswz + Bsinwz)

My = — Jw




Its corresponding auxiliary equation is

1
ng—i—Rm—l—F:O

with roots:

_-R_J(®E—4L]C)

mi

2L 2L
= —a+1/a? — w}
R +/(RT-4L)0)
mo = -




£~ RLC Circuit

Now

a = oL is called the damping coefficient of the circuit

[ 1
wo = IC is the resonant frequency of the circuit.

my and my are called the natural frequencies of the circuit.

The nature of the current will depend on the relationship between R, L and C.

There are three possibilities:

Case 1: R* > 4L /C (Over-Damped)

Graph of overdamped case.

Here both m; and my are real, distinct and negative. The general solution is given by

i(t) = Ae™* + Be™"

The motion (current) is not oscillatory, and the vibration returns to equilibrium.



M RLC Circuit

Case 2: R? = 4L /C (Critically Damped)

Here the roots are negative, real and equal,

il
2L

Le. M) = Mo = —
The general solution is given by

i(t) = (A + Bt)e R/2L

The vibration (current) returns to equilibrium in the minimum time and there is just enough damping to prevent oscillation.



£~ RLC Circuit

Case 3: R? < 4L/C (Under-Damped)

Here the roots are complex where
m) =a+ jw,andme = a — jw

The general solution is given by

i(t) = e (A cos wt+ B sin wt)

where

«a is called the damping coefficient, and w is given by:

T 2r
o \/ 1 R
- VLC 4L?

In this case, the motion (current) is oscillatory and the amplitude decreases exponentially, bounded by

i = ++/A2 + B2 e R/




s
> Loree
— diplcert

Mathematical modeling of Physical Systems
(Mechanical Systems)

 Part-l: Translational Mechanical System

 Part-ll: Rotational Mechanical System



Basic Types of Mechanical

Translational
Linear Motion

Rotational
Rotational Motion




Part-|

TRANSLATIONAL MECHANICAL
SYSTEMS



Basic Elements of Translational
Mechanical Systems

Translational Spring

ot Y XYY\,

Translational Mass

o—fm

_0

Translational

Damper

L®
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. .« | ranslational Spring

A translational spring is a mechanical element that
can be deformed by an external force such that the

deformation is directly proportional to the force
applied to it.

Translational Spring

of Y Y Y\, V\ /\/\.Vf \/\

N

Circuit Symbols

Translational Spring



“4 Translational Spring
F is the applied force k
X 0l YY Y\ 5

Then Xx; is the deformation it x> =0 .WF

o Liserce—ov
(s ~

Or (x; —x,) isthe deformation.

The equation of motion is given as
F — k(xl _X2)

Where Kk is stiffness of spring expressed in N/m
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b~ Translational Mass

 Translational Mass IS an
Inertia element.

* A mechanical system without
mass does not exist.

 If a force F is applied to a
mass and it is displaced to x
meters then the relation b/w
force and displacements is
given by Newton’s law.

[ J
% .@:.“ —
o2’ v -

(aaemliy g AN ® (X) eVA oW e

Translational Mass

_O

x(t)
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s il Translatlonal s

 When the viscosity or drag is
not negligible in a system, we
often model them with the
damping force.

Translational Damper
« All the materials exhibit the i
property of damping to some

extent.

o

* If damping Iin the system s
not enough then extra
elements (e.g. Dashpot) are
added to increase damping.



Bridge Suspension Flyover Suspension




Translational Damper

— —>

X2 R X/

jI » [ — > I

F =Cx F =

* Where Cis damping coefficient (N/ms1).

C

G — 5
—Y(XI -xz)

Vowpiwd> Coet



&~ Mechanical Translational Systems

Newton’s 2d Law for Translational Systems
> F (1) =M (1)
k

@ ;&Q—{ W &0\3 S~



g ;---..Mass-S ring System
gl PANg Sy

Consider the following system (friction is negligible)

k
M >
F ——
Free Body Diagram ol Gree (9
P R SV @ Y
k< : o Caensed ey MRy (P4 )
SRV
M FfM_/) \\!\{
F ——

Where f; and.fasare forces applied by the spring and
inertial force respectively.



M <

Then the differential equation of the system is:



N & Mass-Spring-Friction System

Csider the following system

k
M o
FH_/\
* Free Body Diagram ‘C
ka M %fc o> o
F— H.](‘M




Consider the following system

X1k B

F ANVEA A T

F — k(xl _xz)

Jg»k iw P

/\_)



&~ Mechanical System

9 medses = 2eqy.




&~ Mechanical System

Free-body diagram for Mass
90{»«}0@[

1:
AL

\\\\\ @’Jﬁ T qu(yl_yz)

el S

Mle

Mg

-M\y,—B(y,—y,)—K,(y

M,
il L

- v,)+M g+ f(1)=0




N &~ Mechanical System

Free-body diagram for Mass 2:

%rce ool Ve Sfedion OV o el ok

By, T Tszz > #en

Bl()./z_)./l)T l TK(yZ_yl)
Mg
-M,v,-B,v,—K,y, =B, (y,—V,)

Q %\V%lf

= aee\fe)

— K, (v, =)+ Mg =0
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ROTATIONAL MECHANICAL SYSTEMS



Basic Elements of Rotational Mechanical

Rotational Spring

2, AL

@ o Bvce




Basic Elements of Rotational Mechanical




Basic Elements of Rotational Mechanical

Moment of Inertia

| -




& Mechanical Rotational Systems

Newton’s 2nd Law for Rotational Systems

Y T(1)=16()



& Example
i

Free-body diagrams for inertia 7;:

AN M7
T) I ) \ N ) /
/7~ B9
1,6,

Newton’s 2 law: T'(+)—1,6,(t)— B,6,(t)—T;(t) = 0
=  T(H-1,6,(t)-B,6,(t) = T;(t)



&£~ Example 2

I(t) &(1) 65(1)
tzzu" N A\

(L

ho)

lmﬁm (1 J

Beari

B,

m_,rf

Torsion

AT

L4
Bearing

ANNARNRNRNNNN

B,

Bl

WD 00 0

T(t) =J16, + B16; + k(6; —6,)

0 = J,0; + B;6, + k(62 — 6,)

J
R ardd
o\

2\t L5 il

Lo PR\ /P SSes
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Modeling of Electromechanical Systems



DT pobr % Olleals Curet motor DC DFIVGS

Stator
/

Pole Shoe |/ Face

‘,// Field Winding

Armature Core

/

Bearing

Shaft

f

Armature Winding Commutator

= Variable Voltage can be applied to the armature terminals of
the DC motor.

= Another method is to vary the flux per pole of the motor.

= The first method involves adjusting the motor’s armature, while
the latter method involves changing the motor field. These
methods are referred to as “armature control” and “field
control.”



Armature Controlled D.C Motor

Armature Circuit

Input: voltage u
Qutput: Angular velocity o

Electrical Subsystem (loop
method):

” Fixed Field
u=R_i + L, — + e,, where e , = back-emfv  oltage
dt
Mechanical Subsystem Back electromotive force (back emf) is a

voltage generated by a rotating DC motor

that opposes the supply voltage.
= Jw + Bw

motor



Armature Controlled D.C Motor

Power Transformation:

Torque-Current: T — K i

motor t a

Voltage-Speed: ¢, = K, o

= Combing previous equations results in the following
mathematical model:

( di

a

La
4 dt

Jw + Bw-K i, =0

+ R i1 + K,w = u
a’a b




