
stion 1: (7 points)

Sumber of possible tours in the undirected complete graph G with 5 vertices is :

- 1) 60
- 0) 30
- c) 24\
- d) 12
- e) 6

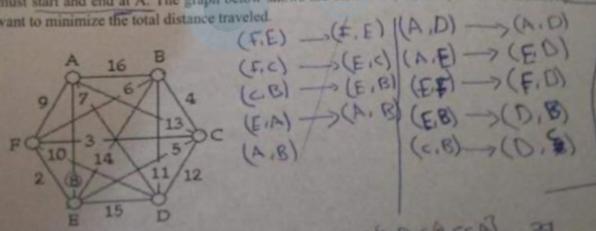
Christofides' heuristic is an effective practical heuristic that has the best-known worst-case performance bound for the traveling salesman problem on complete networks satisfying the triangle-inequality

- a) True
- (b) False

For complete graphs with positive arcs, always the cost of the optimal MST is less than or equal to the cost of optimal TSP

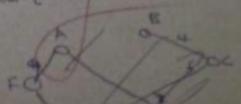
- (a) True
 - b) False

4. Christofides heuristic will produce a walk with the same total cost regardless of which is node is selected in the initialization.


- a) True
- (b) False

Given a set of nodes N and a set of ares representing a spanning tree T, the number of nodes with odd degree with respect to the arc set T is even.

- a) True
- b) False


6. A delivery truck must deliver packages to 6 different store locations (A, B, C, D, E, and F). The trip must start and end at A. The graph below shows the distances (in miles) between locations.

We want to minimize the total distance traveled.

The nearest-neighbor algorithm starting at vertex A yields the Tour La Das Ball Cont is 31

(A.B.C.F.E.A)

Dijkstra doesn't terminate w/ -ve values ⇒ False
Bellman doesn't terminate indirect strue
shortest path tree = MST => False
always M5T + arc = cycle ⇒ False
supply chain broader than logistics ⇒ true
degree of a node in a complete graph + n-1
— complete graph weights are multiplied by a constant > shortest path changes. MST doesn't
MST, last arc added had a weight of 3 ⇒ rest of arcs not added have weight >> 3
ruskal/prim
why is going more expensive than returning > because of backhauls/empty
<u> </u>
TEAM TEAM

ogistics. After developing a travel time network model of their Atlanta delivery region, you arrive at the job site for your first day at work. Joan, one of Sears' dispatchers, says she's about to route a truck from their warehouse through a set of 5 customers and then back to their warehouse, and she wants to know whether she's chosen the tour that minimizes travel time. Her proposed sour will take 2.81 hours. To answer this question, you realize that you'd like to solve a TSP problem but you don't have enough time. Suppose that instead you do the following:

Step 1: You use your network model to extract the minimum travel times between the depot and each of the customers in the delivery set, and also to find the minimum travel times between the customers. This data creates a complete undirected graph, G, connecting all of the customers and the depot with costs defined as travel times.

Step 2: Suppose now that you find the minimum cost tree on G that excludes exactly one node, which in this case is node 3. Let $1TREE^*$; be this tree, with cost $C(1TREE^*_3) = \sum c_{ij}$

equal to 2.29 hours. Suppose that you then print out the costs of the arcs adjacent to node 3 (in no particular order) and they turn out to be: (0.21, 1.54, 0.79, 0.31).

Without any additional computation, you run to Joan to tell her that she's already found the optimal tour! Are you correct, or have you made a grave mistake? If you think Joan has found the optimal TSP tour, explain precisely why using your knowledge of trees, minimum spanning trees, and TSP tours. Otherwise, explain precisely why not. (L.5 points)

b) Suppose that later in your consulting assignment with Sears, you use Christoside. Search to solve a TSP problem, and the resulting tour T has a cost of C(T) as Working on the same problem, your co-worker claims to have found a tour HS with a cost C(SS) 29 Years turn to your co-worker, and tell her that she has made a mistake Explain (AS points)

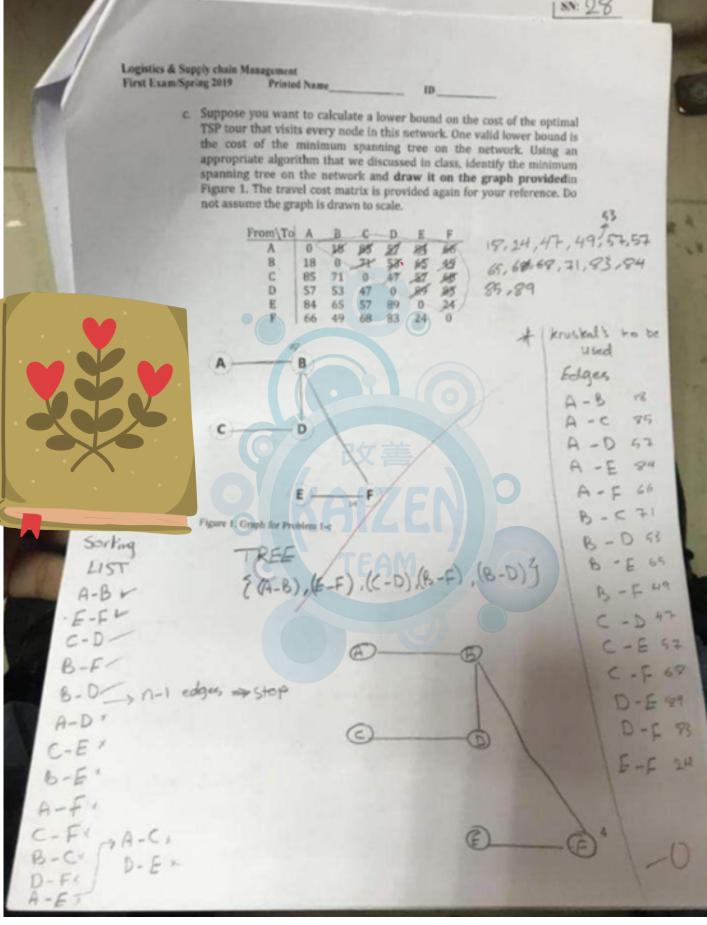
Logistics & Supply chain Management First Exam/Spring 2019 Printed Name

Problem 2: (30 points)

1. Table 1 gives the travel costs cybetween vertices / and / in a network 6. the distances are symmetric, that is, $c_{ij} = c_{ij}$ for all nodes i and j.

ID

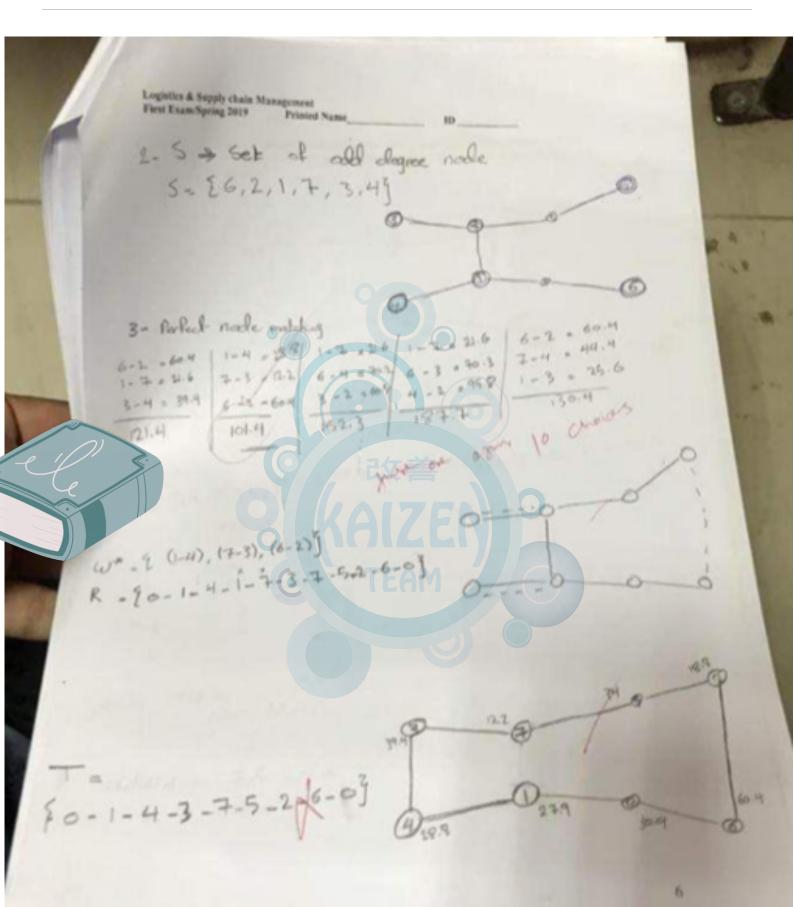
From\To						and J.
A	0	18	C	D	E	F
В	18	18	85	(57)	84	66
C	85	71	71	53	65	49
D.	57	53	82	47	57	68
E	84	65	57	89	89	83
F	66	49	68	83	24	0


Table 1: Travel costs ca

a. In the table below, identify the node to insert during iterations 1 and 2 of the Farthest Insertion heuristic for constructing a TSP tour. Do not perform the insertions.

				Step	Node to insert			
				Init	D, E		-	
				lter 1	A]-A-E	D-A-E	
9.7	ter 1		-6/	Iter 2	C D-A	-C-E		- 2
	tes -	-	\ Ec	(a)		7	Coc+ Con-	Con +77
	10	E		0 0	E Foy	Cas - Cas	CDC	1000
-	-7	84			10 /20	32_		
A	71		B	12 2	2 00		A-1	- 50
8	53	69		4	1,51/		CAC CE	C : 58
	1	57		85 17	18 17 L		AC LE	
-	44				/			
F	83	24	-	(A) 2	MAPERS			
+	1			66 8				
Ack	A		0.1	k C				
LICA			TIC		V	malan bassal	etic to find a TSP	

b. Suppose that during some iteration of an insertion heuristic tour on G, the current tour is T = {B, C, D, B} with total cost 171. Calculate the Insertion cost associated with Inserting a between D and B. show your


 $B - C - D_{A}B \rightarrow B - C - D - A - B$ $C_{DA} + C_{AB} - C_{DB} = 57 + 18 - 53 = 29$ The total cost C (18,C,D,A,B)? = 171 + 22 = 93

			Name			ID_			
roblem 3: (50 poin	nts)							-	
a. A truck statio 1 through 7, depot and the problem, you the depot and	will n	points a	are give						
	0	1	2	3					
0	100	_27.9	54.6	42	56.5	5	6	7	
1	100		67.2	25.6		37	30.9		
2	1 14	1	-	60.5	28.8	48.4	57.4	23:05	20.9
.3.		-		983		18.80			NE
4	-				324	43.1	70.2	12.2	
5			-			77.2	845	942	
6				-			51.6 (34B	
7 4-37-444.44 4.73-39.41	Tabl	le 2: Dista	inces ber	ween de	ot and s	ales poin	ts .	59.3	60.47
и-э-д «нн. н и и 3 - 3 а н	Tabl	le 2: Dieta	inces ber	wwn.deg	の方意	alex poin			34 60.4
4 - 3 - 3 A H		le 2: Dist.		2000	ら 煮 E			2)	34 60.4
4 - 3 - 3 a H				2000	ら 煮 E				34

DMST*
TREE- ES.
5- 249
T- 21, 2, 3, 4, 6, 7]

5= {4,1,7,3,0,6,5,2} T= { } TRE= [4,1,7,3,0,6,5,2]

As a logistics engineer working for a food production factory, your job entails building vehicle routes that trucks should follow to fulfill retailers' demands. All trucks are located at your company-operated distribution center (DC) to start routing towards assigned customers and then return to the same DC. On a given day, the company must serve eight customers (A, B, C, D, E, F, G, H). Each customer requests a given number of the product units from the DC, as shown below. The trucks you may use to deliver the goods have equal capacities with 65 units each. The minimum distance path between all customers' locations and between DC and all customers' sites is summarized in the last table.

Use the Clarke-wright savings heuristic to generate a set of routes. Record the savings you implement at each iteration. Draw the tours on a copy of the graph provided, report the distances for each tour, total distances traveled by all vehicles, and how many units each vehicle will deliver.

able 2 Custo			C	D	1	2	F	G	H
Customer	A	В					15	28	36
Demand 16		20	14	29	22		15		300
able 3 Distar	aces betwee	n all pairs							
To	DC	A	В	C	D	E	F	G	Н
DC	0	25	16	21	7	24	16	24	28
A		0	14	22	26	34	40	38	53
В			0	24	13	21	27	35	44
C				0	26	41	33	15	39
D				7	0	17	15	31	32
				IAI	110	0	25	49	44
E F				NOI	95		0	32	20
								0	30
G				TE	AM		1		0
H									