

(I) RANDOM NUMBER GENERATION (RNG)

Given
$$a=17$$
, $c=43$, $m=100$, $X_0=27$

$$\chi_i = \left[\alpha * \chi_{i-1} + c \right] \mod m$$

$$X_1 = [17 * X_0 + 43] \mod 100 = [17 * 27 + 43] \mod 100 = 2 \rightarrow R_1 = \frac{2}{100} = \frac$$

$$X_2 = [17 * X_1 + 43] \mod 100 = [17 * 2 + 43] \mod 100 = 77 \rightarrow R_2 = \frac{77}{100} = \frac{77}{100} = 0.77$$

$$X_3 = [17 * X_2 + 43] \mod 100 = [17 * 77 + 43] \mod 100 = 52 \longrightarrow R_3 = \frac{52}{m} = \frac{52}{100} = 0.52$$

(2) RANDOM VARIATE GENERATION

Li Given the Random numbers from above \(\gamma 0.02, 0.77, \theta.52 \) Find \(\text{Expo(5)} \)

$$\mu \quad \mathcal{U} = 5 \quad \rightarrow \quad \lambda = \frac{1}{\mathcal{U}} = \frac{1}{5} = 0.2$$

$$\chi_{i} = \frac{-1}{\lambda} * \ln \left[1 - R_{i} \right]$$

$$-\frac{1}{\lambda} \ln (1 - R_{i})$$

$$-\frac{1}{\lambda}\ln(1-R_i)$$

$$\chi_{i}^{o} = \frac{-1}{(1/5)} * \left[\ln \left[1 - R_{i}^{i} \right] \right]$$

$$X_1 = -5 * \ln[1-0.02] = 0.1010$$

$$X_2 = -5 * \ln \left[1 - 0.77 \right] = 7.3484$$

$$\chi_3 = -5 \times \ln[1 - 0.52] = 3.6698$$

continuous

Uniform Distribution [UN(a,b)] (X = a + (b-a)R)

$$X = 1 + (3-1)R$$

$$X = 1 + 2R$$

$$X_1 = 1 + 2(0.02) = 1.04$$

$$X_2 = 1 + 2(0.77) = 2.54$$

$$X_3 = 1 + 2(0.52) = 2.04$$

A Discrete Uniform Distribution

EXAMPLE:

For example, consider the generating of a random variate X that is uniformly distributed on $\{1, 2, ..., 10\}$. The variate, X, might represent the number of pallets to be loaded onto a truck. Using Table A.1 as a source of random numbers R and using Equation (8.16) with k = 10 yields

$$R_1 = 0.78$$
 $X_1 = \lceil 7.8 \rceil = 8$ \Rightarrow $X_1 = \lceil R_1 K \rceil = \lceil 9.78 * 10 \rceil = \lceil 7.8 \rceil = 8$

$$R_2 = 0.03$$
 $X_2 = \begin{bmatrix} 0.3 \end{bmatrix} = 1$ $\Rightarrow \times_2 = \begin{bmatrix} R_2 \\ K \end{bmatrix} = \begin{bmatrix} 0.03 \\ 0.03 \end{bmatrix} = \begin{bmatrix} 0.3 \\ 0.03 \end{bmatrix} = \begin{bmatrix} 0.03 \\ 0.03$

$$R_3 = 0.23$$
 $X_3 = \begin{bmatrix} 2.3 \end{bmatrix} = 3$ $\longrightarrow X_3 = \begin{bmatrix} R_3 & K \end{bmatrix} = \begin{bmatrix} 0.23 * 10 \end{bmatrix} = \begin{bmatrix} 2.3 \end{bmatrix} = 3$

$$R_4 = 0.97$$
 $X_4 = \lceil 9.7 \rceil = 10$ $\longrightarrow X_4 = \lceil R_4 | K \rceil = \lceil 0.97 * 10 \rceil = \lceil q.7 \rceil = 10$

 $p(x) = \frac{1}{k}, \quad x = 1, 2, ..., k$

$$r_{i-1} = \frac{i-1}{k} < R \le r_i = \frac{i}{k}$$
 (8.14)

$$i-1 < Rk \le i$$

 $Rk \le i < Rk+1$ (8.15)

mallest integer $\geq y$. For example, $\lceil 7.82 \rceil = 8$, $\lceil 5.13 \rceil = 6$, and $\lceil -1.32 \rceil = -1$. For $y \geq 0$, $\lceil y \rceil$ unds up. This notation and Inequality (8.15) yield a formula for generating X, namely

For example, consider the generating of a random variate X that is uniformly distributed on [1,2... The variate, X, might represent the number of pallets to be loaded onto a truck. Using Table A.lass of random numbers R and using Equation (8.16) with k= 10 yields

Normal

I had 2 RANDOM NUMBERS "R" & "R2" Standard Trandom variate [M=0,0=1]

That 2 RANDOM NUMBERS "R" & "R2" Proudom normal variate [M=0,0=1]

Totandard random normal variate

Totandard random normal variate

$$Z_{1} = \left[\sqrt{-2 * \ln(R_{1})^{2}} \right] \left[\cos(2\pi R_{2}) \right]$$

$$Z_2 = \sqrt{-2 * \ln (R_1)^2} \left[SIN \left(2\pi R_2 \right) \right]$$

mutually independent. Combining Equations (8.26) and (8.27) gives a direct method for generating two independent standard normal variates, Z_1 and Z_2 , from two independent random numbers, R_1 and R_2 :

$$Z_{1} = (-2 \ln R_{1})^{1/2} \cos(2\pi R_{2})$$

$$Z_{2} = (-2 \ln R_{1})^{1/2} \sin(2\pi R_{2})$$
(8.28)

FOR EXAMPLE: - $R_1 = 0.1758$ $R_2 = 0.1489$ $R_3 = 1.11$ $R_4 = 0.1758$ $R_4 = 0.1489$ $R_5 = 1.11$ $R_5 = 0.1758$ $R_5 = 0.1489$ $R_6 = 0.$

To illustrate the generation scheme, consider Equation (8.28) with $R_1 = 0.1758$ and $R_2 = 0.1489$. Two standard normal random variates are generated as follows:

$$Z_1 = [-2\ln(0.1758)]^{1/2}\cos(2\pi 0.1489) = 1.11$$
$$Z_2 = [-2\ln(0.1758)]^{1/2}\sin(2\pi 0.1489) = 1.50$$

$$X_1 = 10 + 2(Z_1) = 10 + 2(1.11) = 12.22$$

$$X_2 = 10 + 2(Z_2) = 10 + 2(1.50) = 13$$

To obtain normal variates X_i with mean μ and variance σ^2 , we then apply the transformation

$$X_i = \mu + \sigma Z_i \tag{8.29}$$

to the standard normal variates. For example, to transform the two standard normal variates into normal variates with mean $\mu = 10$ and variance $\sigma^2 = 4$, we compute

$$X_1 = 10 + 2(1.11) = 12.22$$

$$X_2 = 10 + 2(1.50) = 13.00$$

