Engineering mathmatics

These notes were prepared to help students better understand the course. However, please note that they are not sufficient on their own. It is strongly recommended to practice the suggested questions provided by the instructor to fully grasp the material and prepare well for the exam.

3 dy = x y sin x , y(0)=1 First order Linear D.E ploolly fixth are continuous functions oly (y+1) = x sinx dx g'+p(x) y=f(x)
so this is first order liner D. E ببلاص بنستعة Jyt' dy= x sinxdx X \bigcirc Sinx 1 \bigcirc Scosx \bigcirc S - Sinx how to solve this equation مع العلم الرامي عدور مع إذا مين و الدميم ال 11+4 dy= x sinx I we will call this equation (f) y+lnly) ==x cosx + sinx + cos solution Dhind the integretion factor e 3 Multiply 1 by e Spixidx 1+0=0+0+0 C=1@ simplify & integrate 4+Inly =XCOSX+Sinx+I-Particular Example: Solve the following ODEs 1 x 2 + 3y s sinx 2 1x2y+y)dy +(y+1)dx=0 $\frac{\chi y' + 3y = \sin \chi}{\chi^2}$ y(x2+1)dy=-(y+1)dx -30/3 = dx $y' + 3y = \sin x$ = Linding the integrating factor substitution 4=9+1 $e^{\int \frac{3}{x}} = \frac{3 \ln x}{e} = x^3$ du =dy 1-4 du = dx $x^3y^1+3x^2y=\sin\kappa$ (integreting) (function)

Factor (function) \ \frac{1}{4} - 1 du = \dx \\ \x^2 + 1 (x3 y) = (sinx In/u/- u = tan (x) + c final answer In(4+1) - (4+1) = tan (x)+C 3 de = x+1+xy2+y2 $\frac{2}{1+x^2}$ $\frac{4x}{1+x^2}$ $\frac{1}{(1+x^2)^3}$ ds = x+1 + y2(x+1) $\Rightarrow \text{ Linding } e^{\int \frac{4x}{1+x^2}} 2 \ln |1+x^2|$ $\Rightarrow \text{ Linding } e^{\int \frac{4x}{1+x^2}} = e^{\int \frac{4x}{1+x^2}} 2 \ln |1+x^2|$ 0 = (x+1)(y2+1) $((1+x^2)^2)^{\frac{1}{2}} = \frac{1}{1+x^2}$ visite $(1+x^2)^2$ John = (dx(x+1) Sep $(1+x^2)^2y = tan^2(x) + C$ fan 141 = x=+x+C

Note: المادلة على شكل المعادلة على شكل 4/+p(x)y=f(x) 24/+p(x) y=f(x)yh,n+0,1 ممكن يطلع معي بالو عاد ال (Form) x+xv) == f(y) het u=y=n == u'=(1-n) jny' $\chi' = \frac{dx}{dx}$ بنفس بالمعادلة د الأحضر 3 dx = 7 4 y2-2x dx = 4y2-2x (1-n)y-ny1+(1-n)p(x)y-ns(1-n)P(m) dx = 4y-2x u'+ (1-n) p(x) (1=(1-n) f(x) $x' - \frac{2}{9} \times = 4y$ u' + p(x) u = F(x)espect) = est = 2 ln/y) = 42 Lythis is Linear in (u) D.E $(y^2 \cdot \chi)' = 4y^3$ الحلباذيمس مع على على المحلف y2.x = 4444+C Let u=y -n Then =>y2x= y4+C u'+ (1-n) p(x) u= (1-n) f(x) u'+(1-n)upx=(1-n)fa) Bernoulli DE Example: Solve the Pollowing ODE y'+p(x) y=f(x) yn = y2 y3 y-2y-1 $() x^2 y' + 2x y = y^3$ $\frac{y'+2}{x}$ $y = \frac{y^3}{x^2}$ عباتها للهاد لهاعي لأع $u=y^{1-N}=y^{1-3}=y^{-2} \Rightarrow u'=-2y^{-3}y'$ Q: find all values of a soft of this D.E is hinew y'+2xy = x2y $\frac{u'-2\cdot 2}{x} \cdot \frac{u=-2}{x^2}$ $u' - \frac{y}{x}u = \frac{-2}{x^2}$ $\alpha = \frac{2}{3}$ $\alpha = 1$ e = e = xq SO R-{=,13 آص ای کارام بر جهال $x^{-4}u' - 4x^{-5}u = -2x^{6}$ له) الى حورتها الأنماية $U(x) = (y(x))^{N} \Longrightarrow u'(x) = n(y(x)^{N-1}(y'(x))$ $(u \cdot x^{-1})' = (-2x^{-6})$ 9-2x-4=2x-5+C u'=n yn+ y1 $\alpha \cdot \chi^{-1} = \frac{-2}{5} \times \frac{1}{5}$ $u(x)=y^2 \Rightarrow u'(x)=2yy'$ ux = = x -5+c

$$9/+x^2y = e^{-x^3} \frac{1}{3y^2}$$

$$u = y^{1-2} = y^3 \Rightarrow u' = 3y^2 y'$$

$$e^{\int 3x^2} = e^{\int x^2} = e^{\frac{3x^2}{3}} = e^{x^3}$$

$$e^{x^3}$$
 \(\frac{1}{2} + \frac{2}{2} = \fr

$$e^{x^3}.u = coshx +C$$

$$x' + p(y)x = f(y)x^n$$
, $n \neq 0,1$

het u=x

then the differential equestion can be reduced to

Q: Solve the following DE

$$\frac{dy}{dx} = \frac{y}{x^2y^3-x}$$

$$\frac{dx}{dy} = \frac{x^2y^3 - x}{y}$$

$$\frac{dx}{dy} \leq x^2 y^2 - \frac{x}{y}$$

$$\chi' + \frac{\chi}{4} = \chi^2 y^2$$

$$u = \chi^{-2} = \chi^{-2} \implies u = -1 \chi^{-2}$$

$$u' - \frac{y}{y} = -y^2$$
 $e^{\int \frac{1}{3}} = e^{\int \frac{1}{3}} = \frac{1}{2} e^{\int \frac{1}{3}} = \frac{1}{4}$

$$u \cdot \frac{1}{3} = -\frac{y^2}{2} + C$$

مربه البالة تلون تلمه ما بالمعادية كاب

y (1-x2) dys x alx

Coun be solved all Bernoullie in a or sepreble

chapter one is all about ordinary D.E

$$y' = f(\frac{1}{x}) \Rightarrow homogeneous$$

$$f(\frac{1}{2}) = (\frac{1}{2})^2 + 2(\frac{1}{2}) + 1$$

$$f = \frac{1 - \frac{\lambda}{2}}{1 + (\frac{\lambda}{2})}$$

$$f = \frac{x^2 + 2xy}{y^2 - x^2} \implies 1 + 2(\frac{y}{y}) + \text{term M} \text{ degree 1 sin}$$

$$(\frac{y}{y})^2 - 1 \qquad x^2 \implies 2 \text{ 5 othis is}$$

$$2xy \implies 2 \text{ function Hill}$$

$$50 \text{ this is Function of } (\frac{y}{x}) \qquad y^2 \implies 2 \text{ function Hill}$$

$$x^2 \implies 2 \text{ function of } (\frac{y}{x}) \qquad x^2 \implies 2 \text{ function of } (\frac{y}{x})$$

$$x^2 \implies 2 \text{ function of } (\frac{y}{x})$$

$$x^2 \implies 2 \text{ function of } (\frac{y}{x})$$

$$x^2 \implies 2 \text{ function of } (\frac{y}{x})$$

$$f = \frac{x^2 - xy + 5}{y^2 + x^2} \rightarrow \text{this is not Function}$$

$$y'=f(\frac{y}{x}) \Rightarrow we call this equation Homogenuous $u=\frac{y}{x} \Rightarrow y=xu$$$

$$u = \frac{y}{x} \Rightarrow y = xu$$

$$u = \frac{y}{x} \Rightarrow x = x \cdot u' + u$$

then this DE should turn to seprende

Q: which of the following ODEs is Homogeneous?

Homo geneous

Ex: Solve the Pollowing DEs

$$xu' = u^2 + 1$$

$$\frac{\chi du}{dx} = u^2 + 1$$

$$\int \frac{du}{u^2+1} \int \frac{dx}{x}$$

Jose + Siny Jak See24+ Stany Seau = Sdo banu+ secu = x+c tan(x-y)+see(x-y)=x+c (4) y'=(2x+y)2-2 2- ی = اب u'-z = (4)2-z du = u2 dy solx Ju-2 du s Jdx 1 - x+C -1 = x+C $\alpha = \frac{1}{x+c}$ 2x+ys -1 x+c

سِي عميروهيل	
(x+y)+2	Example: f(x,y)= x cosy-2y, Lind of , SI bx by
(⊁ ←∄)	-
457.01	<u>bf = cosy , df = -xsiny-2</u> by
α=x+y	<i>or O</i>
u'= 1+g'	Example: Tt (P access 2 final t
ع کی ۔ ا	Example: If $Sf = x\cos y - 2y$, find f .
u/-1= 4+2	
Ÿ.	$f(x,y) = x \sin y - y^2 + g(x)$
u'-1=1+2	ل هد طالومن التكامل
	constant, x of constant the see of
$u' = 2 + \frac{2}{4}$	إذا كلمانبالنبة روب كان حطينا الدبي
du - 2 : 2	Exact DE
d4 = 2+2 dx	
Coly sode	M(x,y)dx+N(x,y)dy=0
$\int \frac{du}{2+\frac{2}{4}} \int \frac{du}{2} du$	
	Ex (x-2y)dx+(y-2x)dy=0
du = clx 2u+2 Jeli zept	exact qualifordial ala all
2 <u>u+Z</u> J	exact राजा विकार के एक किया की
طريقة المجا	
((1+1)- /4= clx	to be excel
0 24+2	Must be
1 2(u+1) = dx	λμ - ΣΝ
J 2(4+1)	$\frac{34}{90} = \frac{8}{80}$
Ju+1-1 = 200x	
Uu+1	U(x,y)=C solution
1 - 1 2 2 dx	
	54 = M Su = N
u-In/u+1\=2x+C	
	Is to find u integrabe by respect to(x)
$(x+y) - \ln(x+y+1) = 2x+C$	
Route - Proposited Die 1 1500	$u = \int u dx + g(y)$, $u = \int v dy + h(x)$
Revision for partial Dirivatives	
$Ex:LF f(x,y)=x^3+2y^2$, find	Example: Solve:-
Die Constitution of the Co	
Sf = 4y Sf = 3x ²	(ex+y)dx+(x-siny)dy=0, y(0)=0
89 2×	
	<u>M=1, SN=1 ⇒ Exact</u> 87
$Ex: If f(x,y) = x^2 + xy + siny$	ο λ γ
Lind	14 a a Authorn
0 of = 2x+ 4	=the solution is u(x,y)=C
5x - LX+ J	<u>Su</u> = M u = ex+xy+ f(y)
6 df 6 X + COS V	8x
$2\frac{df}{dy} = x + \cos y$	$\frac{\delta u}{\delta} = e^{x} + y \qquad u(x,y) = e^{x} + xy + \hat{x}(y)$
3	
	Solu = (ex+y) dx we must find this
	J ind this

Solve: Differenticete with respect to y (2xcosy+3x2y)dx+(x3-x2siny-y)dy=0 u(x,y)zex+xy+f(y) <u>δη</u> =2x8lng+3x² <u>λη</u> = 3x²-2x sing du = x+f'(y) Exact dx Is this is N x-siny=x+P'(y) &y = 2x cosy +3x2y (f'(y)=-8iny John of (2x cosy + 3x29) dr f(y)= cosy +C, Gnow substituteit in the previous u= 2x2 cosy + 3x3 y + Fy u=x2cosy+x3y+f(y) u(x,y)=ex+xy+cosy+c now we will differential
it with respect toly) : The solution is u(x,y)=C u(x,y)=ex+xy+c0sy+C dr=-x2sim+ x3 + f(y) C= 6x +x9+cos9+c $\Rightarrow e^{x} + xy + cosysc$ this is the solution x3-x2 sing-y=-x2 sing + x2+ = (y) 1+0+1=C C=2 J & (y) = - y ex+xy+c08y=2 f (y) 5-72 f(y)== 2y2+C :. u(x,y)=C x2 cosy+x3j-1y2=c

H.w: Solve: of = - sind +y cosx (sinx+x cosy) dy+(sim+ycosx)dx=0 ر بوجع برتبهم (siny+ycosx)dx+ (sinx+xcosy)dy=0 δη = cosy+cosx, dn = cosx+cosy

σχ

εxcelt du = ll de = sing+y cosx du=(siny+y cosx)de u=xsiny+ysinx+f(y) 84 = xcosy+sinx+P'(y)

 $\frac{\delta y}{\delta y} = x\cos y + \sin x + P'(y)$ $\frac{\delta y}{\delta y} = x\cos y + \sin x + P'(y)$ $\frac{F'(y) = 0}{\delta y}$

: solution is u(x,y)=C

M(x,y) dx + N(x,y) dy 50 Example: If (2x+6x2y2)dx+(4xny-12y3)dy=0 83 + 8x SM - SN = R(x)

N - SN = R(x)

Function is Fig. (x)

(R(x) clx) :- exact Findn. $\frac{d\mu}{\partial t} = 12x^2y$, $\frac{d\nu}{\partial x} = 4ynx^{n-1}$ 12x245 x 44x xn-1 ادا طلع صع (الع) عند الله بتوجه ا: 3x2ys yn xn4 Lu - du Sx = R(y) => l/(y) = e n=3 n=1=2 (n=3) Ex: solve the following oDEs (y2-3xy-2x2)dx+(xy-x2)dy=0 Non-Excet DE <u>8M = 2y-3x</u>, <u>dN = y-2x</u> 11(x,y)dx+10(x,y)dy=0 SU & SN = non Frant $\frac{\delta M}{\delta J} = \frac{\delta N}{\delta \kappa} = \frac{(2 \times -3 \times) - (y - 2 \times)}{\chi^2 - x y}$ twe will search to Lunction collect ETUSES MX (X,y) x2-x7 x2-x7 x(xx1) x = 2x-3x-7+5x = x-7 = x-4 5) Lyry إذا صريع هاد ال (١٠١) بالمعادية وماري المملك Integratingually Foretor H= ES = EX Mudraph N dy =0 = excet Multiply the D. E by(X) Mintegrating fuelor (xy2-3x2y-2x3) elx+ (x2y-x3) ely=0

x = integration is except (integration)

(xy2-3x2y-2x3) elx+ (x2y-x3) ely=0

(xy2-x3) elx+ (xy2-x3) ely=0

(xy2-x3) we only have to colculate integreting factor as a function of (x)org) وس آ تا ماهم المآرر ما برف و عدا حرا بدخ - با بدخ - با بدخ - با بدخ - با بدخ ا along only

not excet

$$\frac{\partial M}{\partial J} - \frac{\partial N}{\partial x} = \frac{(3x^2 + 2y) - (6x^2 + 3y)}{3x^3 + 3xy}$$

$$= 3x^2 + 2y - 6x^2 - 3y$$

$$\frac{dM}{dJ} - \frac{JN}{J^{2}} = \frac{-3x^{2} - J}{-(3x^{2}y + J^{2})}$$

$$= \frac{-(3x^2+4y)}{-(4)(3x^2+4y)} = \frac{1}{3}$$

$$(3x^2y^2+y^3)dx+(2x^3y+3xy^2)dy=0$$

Homework: Final the integrating Remor

(3x2y+2xy+y3) dx+(x2+y2) dy50

$$= \frac{3(x^2 + x^2)}{-(x^2 + y^2)} - \frac{3}{-3}$$

$$\mu = 0 = 0 = 0$$

Not excet

Home work:-	
Show that U(x,y)=xy2 isan interacting	
factor of 1-	
(2y-6x) dx+(3x-4x2y-1)ely=0	
(2y3x -6x2y2)dx +(3x2y2-4x3)dy=0	
Dy = 6x42-18x24	
34	
Fxad	
3y = 6xy2 - 12x2y Exact	
ðx , ,	
Softed Mis	
integreting	
Factor	

Chapter 2 Second order ODEs

Second order Linear D.E

$$y'' + p(x) y' + q y = f(x)$$
 second order that when $f(x)=0 \Rightarrow homo$ home $f(x)\neq 0 \Rightarrow non home$

سو home 2 Solubions با باع 2 عنی إذا أخذن ال اعواله عن آخ وعوضر راه راتونونو

solutions

Fif we have two soltions in Multible pour i Ur

Other wise y, + C y 2 sore himounty independent

#Ex: are the Lollowing solutions independent or dependent?

$$\frac{f(x)}{g(x)} = \frac{x^2}{3x^2} = \frac{1}{3}$$
 dependent

if I have 2 solutions L& g

I if we have f,g soloutions Ler homo D.E if we calculat $W(f,g) \neq 0 \iff f,g$ independent

w(£, g) = 0→ £, g dependent so we will consider them ensone solution

* b in second order D. E we are searching For 2 independent
solutions

Exi is cosx, sinx independent?

$$\frac{\text{Cosx, sinc}}{-\text{sinx}} = \frac{\text{Cosx}}{-\text{sinx}} = \frac{\text{cos}^2 \times + \text{sin}^2 \times 5.1 \neq 0}{\text{cosx}}$$

$$\frac{-\text{sinx}}{-\text{cosx}} = \frac{\text{cosx}}{\text{so they are independent}}$$

$$for (x^{2}, 3x^{2}) \omega_{(1)} | x^{2} | 3x^{2}$$

$$2 \times 6 \times | = 6x^{3} - 6x^{3} = 0$$
So they are dependent

2 independant los est as rosall

A be 1's theorem

So this means that $W_{(y_1,y_2)}(x)$ either is zero for all x Einternal or else is never zero for the interval.

$$ty'' + 2y' + te^{t}y = 0$$

 $W_{(y_1,y_2)}(2) = 3$, Lind $W_{(y_1,y_2)}(5)$

طرية الحل هاي خامة بر لما عَلَمَة منه من كان بلك عقلة منه من وليلو

$$\frac{-\int_{0}^{2}}{e^{-2\ln t}} = \frac{-2\ln t}{-2} = \frac{1}{t^{2}}$$

$$(y_1, y_2)(t) = \frac{12}{t^2}$$

Ex: if W(x, y) = 3e4t and L(t)= e2t Line of (t)

& this is kirst order Linour D.E

$$g' - 2g = 3e^{2t}$$

 $e' = e$

$$\int (q \cdot e^{-2t})' = \int 3$$

```
Ex: If W(f,g)s2, Lind w(f, f+zg)
               W(f, f+29) = f (f+29)'-(f+29).f'
                                                     f(f'+2y')-(f+zy)f'
ff+2fq'-ff'-2f'g
                                                                    = 2 fg'-2f'g
                                                                        = 2 (fg'_f'g)
                                                                               5 w (x,g) = 2 x254
                                                                      س (ع على (ع على الع (ع) بعا
موضا(2-) بعا
                   X-y_missing f(x,y1,y")=0->y-misseel
                    Ex: y" = X2+y'2 y-missed

hinere & equection 1) & 6 is to it as City

non hiner
                   اللترط العديد عليها إنها كون لعديد الادرد. المعالية المع
                           W= F(x,u)
                                                4 so it is now first order D.E intermot(x,y)
                               du = F(x,u)
1 solve y"+ 2 y'= 1 x2
                                                                                                                                               \frac{dy}{dx} = \frac{x+c}{x^2}
                                     Ly y missed
                                                                                                                                                       dy = \frac{x+c}{x^2} dx
                                   u=y' => u'=y"
                                                                                                                                                          y = 5 + + 5 = dx
                       \frac{u' + \frac{2}{x}u = \frac{1}{x^2}}{e^2 + \frac{2\ln|x|}{x}}
e^2 = e^2 = x^2
                                                                                                                                                         ys |n|x|+ c 1x-2 dx
                                 x2u' +2xu = 1
                                                                                                                                                          y= |n/x | + c x-1
                                                                                                                                                             7= In |x| - C1 + C2 Solution
                (u.x2)/s
                                                                                                                                              second order D.E always the solution has 2 constants
                             u.x^2 = x + C
                                   \frac{U = x + C}{x^2}
equin we
y' = x + C \Rightarrow \text{home D. 6}
x^2 \quad \text{kiref order}
```

#H.W: Solve the Rollowing ODEs:-u=y' > u'=y" xu'+us1 x u'+\us1 e = ex=x (x.u) = 5x xu = x2 +C1 xy1=x2+C1 $\frac{1 \times dy}{x} = \frac{x^2 + c_1}{x}$ $\int dy = \int \frac{x}{2} + \frac{C_1}{x} dx$ y = x2 + c, |n|x|+C2 3 y"+(y')2+1=0 4=y/ -> 4'=y" $u' + u^2 + 150$ $u' + u^2 = -1$ e = ex J(ex. u)'s/ex ex u = -ex+c1 U=-ex+c1 43-1+61 dy = -1 + ex f dysfidx+ fci y = -x + [c|ex y = -x + c|ex + c2 = y = -x - c|ex + c2

now we are going to discuss x_missed y"= f(y,y") x_missed Let u=y' - us y" u' = F(y,u) ,u) 4 first order D.E <u>du</u> = F(y,4) first order ordinary Wales or 10 سي عنو) 3 همتقيات هاتمامانا معها قبل (x,y,u) & SLO فعذى ٤ متعيدان لدي أطلع صن وادر أكتر بديالة متعير وليسرعتني متعيرين du s du dy y/=u dy = a. dy dr Munghand u du = f(y,u) # Ex: Solve : y y"+(y')2=0 X_misseel u=y' -> u'=y" y u1 + u2 50 $u' = -u^2$ $\frac{du}{dw} = -u^2$ u.du = - u2 ydy = dy = = du = dy -Inlul = Inlylec InIul + Inly1 =C Inlugisci e

4+15 ecix. C2

y = c2e -1

12/19lat

H.w: consider:-

 $(1-x^2)y^{11}-2xy^1+2y=0$, $y_1=x$ Find a 2nd-independent solution yz

$$H_{int}: \frac{1}{x^2(1-x^2)} = \frac{1}{x^2} + \frac{(1/2)}{x+1} - \frac{(1/2)}{x-1}$$

$$y'' - \frac{2x}{(-x^2)}y' + \frac{2}{1-x^2}y' = 0$$

$$\int_{0}^{\infty} \frac{1-x^2}{x^2} dx$$

part 2: Homo Linear DES with constant coefficients

$$r^2 + \alpha r + b$$

1) two different solutions
$$y_1 = e^{r_1 x}$$
, $y_2 = e^{r_2 x}$

(2) two similar solutions
$$y_1 = e^{i \times} \rightarrow y_2$$
 curies

contribute the body introduce to solution code was taken to est

(3) $\Delta = -$ then we only have 2 complex so bustions

$$(r+2)(r-1)=0 \Rightarrow [r-2], r-1$$

- the general solution

[e-2x, ex]; s called fundamentall set of solutions or Basis of Solutions

$$r_{5}-3$$
 $y_{1}=e^{x}=1$
 $y_{2}=e^{x}$

¥ Ex: Solve: y"+4y'+2y=0

$$\Delta = b^2 - 4000 = 16 - 4(1)(2)$$
= 16 - 8
= 8

$$\frac{-b \pm \sqrt{5}}{2a} = -\frac{4 \pm \sqrt{8}}{2} = -\frac{4 \pm 2\sqrt{2}}{2} = -\frac{2 + \sqrt{2}}{2}$$

Ex: Final a 2^{nol} -order hinear homo D.E whose solution is: ysc.e2x+c2 e3x f=2 rs3 (r-2) (r-3) $r^2 - 3r - 2r + 6$ 12-5r+6 7"-57'+6y=0 # IT the channeleristic equation r2+our+bso has equal roots r1=r2=s, then 113erx, 425xerx # Example: solve: 1"- 6449450 (2-6+420 (1-3) (1-3) 50 4=e3x , 425 xe3x # Example: solve y" +4TTy1+4TT2 J 50 (2+4TY+4T2=0 (r+2m) (r+2m)=0 (=-2TT 4, = e , 42 = x e x # Example: Find a 2nd -order Lincur home D.E whose general solution is: ys (C1+c2x)e2x Js CIE + C2XE2X (r+2) (r+2) =0 12+21+ 21+4 20 12+41+4 20 41441 + 4420 # Example: solve I up 7"-9420, 19(0)=-5, 4, (0)=-15 y'w:30,ex-30,ex -12=-6-602 y=c1 e3x+c2 =3x 12-450 (r-3) (r+3)=0 -12=3C1 -3C2

r=3 , r=-2

-25C1+C2

C1 = -2 - C2

G=-2-1=-3

-65-6C2 -6 -6

C2=1

 $-12 = 3(-2-c_2) - 3c_2$

-12=-6-3c2-3c2

-125-6 - 6C2

```
Homo DEs complex Roots
   V-1= i
 Form for complex num a+bi

    # Example: Solve Y²+2Y+2=0

               a=1, b=2, c=2
    D= 62-4000 = 4-4 (1)(2) = 4-8=-4
    2 = -2 ± 2i = -1 + i
2 = -1 - 1i
we will call this 2 to M
 Complex Roots
   rs አ+ሥር
  y_1 = e^{(\chi + \mu i)x}, y_2 = e^{(\chi - \mu i)x} \Rightarrow \psi these are complex solutions
  From these two complex solutions we can obtain the hollowing two real solutions
  4=ex cos(Mx)
   42= ex sin(1/x)
# Example: solve: 4" +241+5450
                  12+21+5=0
                  as1 , b=2, c=5
 D= 62-4000= 4-4(1XS)=4-20=-16
   \frac{-2 \pm \sqrt{-16} = -2 \pm 4i = -1 + 2i}{2}
\frac{-2}{2}
\frac{-1 - 2i}{2}
\frac{-x}{4}
\frac{-x}{4}
\frac{-x}{4}
\frac{-x}{4}
     425e Sin (+2x)
    y(x)5 CIE* COS(2x)+ CZE* 8in(2x)
                                                         7(x) = C1 COS((8x) +C2 8in(13x)
    y(x) = e-x (C1 COS(2x) +C2 Sin(2x))
# Example: solve y" +ay=0
            12+9=0 | y1=e0 cos (18x) →y1 x cos(18x)
            r=-3
                         y2= e ° 8in ((3x) → y2=8in((3x)
              r=+ 130
```

```
* Ex: Solve: 4"+ 164=0
                                                   r2+1650
                                                (12=1-16
                                                    7=±40
                   y = cos(ux)
                425 87 (UX)
                    4(x) 5 C1 COS(4x) + sin(4x)
العن المعادية عليه العنه العنها العنها العنها العنها العنه العنه العنه العنه العنه العنه العنه الكنى العنه 
                                                                                                                                                                                         س الطريقة إجمع خراج نمنني عهدول العظوال
                                                                                                                                                                                        we have two roots 1,1/2
                                                                                                                                                                                                   (r-r1) (r-12)=0
                                                                                                                                                                                     then 12- (r1+12) r+ r, 12=0
   * Find a 2nd-order hineur homogenuous DE, whose solution is:-
                                           y= C1 e2x cos3x+e2x C2 sin3x
                                                           با متعمل ال باستعمل على
                                               7=2, M=3
                     2+30 2+30
                                 ri= 2+30, 12=2-30
                 rixr25 (2+30) (2-30) 54-60+60-902
                                                                                                          = 449 =13
                 r1+r2=2+30+2-30
                  11.+12 =4
                 r2-4r+13=0
                     y"-4y1+13y=0
   * Home worker-
     (1) if lex, e2x is basis of y"tay +by=0, kind a, b
                  (r-1)(r-2)

r^2-2r-r+2 01=-3

r^2-3r+2 b=2
```

```
1) if [e(-1+i)x, (-1-i)x]
   (1=-1+i , 62=-1-i
  1/x125(-1+i)(-1-i)= 1+6-x-i2=1+1=2
   r1+12=-1+/2-1-/ =-2
        12-(11+12)1+ r112
        r2-21+2
         y"-241+2y=0
 Couchy Euler DES
    X2y" +axy' +by=0, x70
> second order
 الد) تا للماهما س لبقي النف
 y = x<sup>r</sup>
method
      r(1-1)+ar+b=0
     6 & this has three cases
  1) Different Real Root 11 ± 12
   100 y = x 1, y = x12
DSO equal ROOTS 11=1251
y<sub>1</sub> s x<sup>r</sup> , y<sub>2</sub> s |n x x<sup>r</sup>
     Y = x2 cos ( M /hx)
     1/2 = x 2 sin ( 1 lnx)
 # solve we Rollowing ODE :-
 1 2x2 y"+3xy'-y50
                            712 X
    2 r(r-1)+3r-1=0
                            y25 x €
      212-21 +31-150
      212 41-150
                            J(x) = C1 x-1 +C2 (x
     (2r-1)(r+1)=0
        rs-1, r==
```

$$r(r-1) = 6r + 4 = 0$$

 $r^2 - 4 = 5r + 4 = 0$
 $r^2 - 6r + 4 = 0$
 $(r-3) (r-3)$

```
* Given: 45 9 x2 + C2 x2 lnx
        (r-2) (r-2)
       12-21-21+4
       12- 4r +4
     Couchy Enter 510 0
       r(r-1) - 3r +4
     x2y"-3xy1+4y=0
  * Example: If [x² cos (lnx), x² sin(lnx) is a fundamental set of solutions of
           x2 y"+axy' +by=0, find a, b
   Sol :-
            r=2+i , r2=2-i
      rixr2 = (2+i) (2-i) = 4-2i +2i -i2 = 4+1=5
      11+12=2+6+26=4
               r2 - (r,+r2) r+ r, r2=0
                r2-4r+5=0
               r (r-1) - 3r +5=0
                xy"-3x11+5450
                  a=-3, b=5
 Homework: IT { cos(2 lnx), sin (2 lnx) } is a books of solutions of:
                     ax2y" + bxy + cy50
                   Lind a, b, andle
             r=+2i , r2=-2i
     1, x12 = 20x -20 = -412 = 4
       r1+12=0
           12- (1+12) (+(1,x12)
            12-0+4
             Y2+4 50
             x2y"+4450
```

* Homework: Solve the following ODEs

$$4r(r-1)+1=0$$

 $4r^2-4r+1=0$

$$(2r-1)$$
 $(2r-1)=0$

$$y_1 = x^{\frac{1}{2}}$$
 $y_2 = x^{\frac{1}{2}} \ln x$

- Liveling yp

yps Ae3x

Example: Solve:
$$y''-2y'=2e^{2x}$$
 $y''-2y'=0$
 $(2-2r=0)$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1-2)=0$
 $(1$

Vouriation of parameters

appliced on non-homo Ds

H=7h+ Jp - undet - coeke

```
Oyh= C1 41 + C2 42
    ل س دفون الـ الله ترا الله عن الله عن الله
# Ex: solve: y"+y= seex
      y "+y=0
       r2+150
        roti
   41= COSX
    72=8inx
   9 4 = C1 CO80 + C2 8,000
   W(cosx, sinx) = cosx - sinx. -sinx
  yp=-cosx Sinx. Secx-sinx Cosx. Seex
    4p=-cosx frinx - sinx cosx
    yp = - cosx stanx - sinx si
     yp3-cosx (-In (cosx)) - x sime
         yps cosx Incosx-x sinx
     4=C1 COSX +C2 sinx+ COSX In COSX - x sinx
 # Example: Solve: x2y" -2xy - 4y = 12x-3
       yn => x2y"-2xy1-4y=0
             r (r-1) - 2r -4=0
              12-1-21-4=0
              r-3r-4=0
               (r-4) (r+1)50
              rs4, rs-1
         J1=24 , 42=2-1
```

$$\frac{dh = c_1 x^4 + c_2 x^{-1}}{(x^4, x^{-1}) = x^4 \cdot -1 x^{-2} - x^{-1} \cdot 4x^3}$$

$$= -x^2 - 4x^2$$

$$= -5x^2$$

$$y_{p} = -y_{1} \int \frac{y_{2}}{w} x_{1} + y_{2} \int \frac{y_{1}}{w} x_{1}$$

$$y_{p} = -x_{1} \int \frac{x_{1}}{-5x_{2}} x_{1} 2x_{2} + x_{1} \int \frac{x_{1}}{-5x_{2}} x_{1} 2x_{2}$$

$$y_{p} = \frac{12x_{1}}{5} x_{1} - \frac{12x_{1}}{5} x_{2} + \frac{12x_{2}}{5}$$

$$y_{p} = \frac{12x_{1}}{5} x_{1} - \frac{12}{5} x_{1} - \frac{12}{5} x_{2} + \frac{12x_{2}}{5}$$

$$y_{p} = \frac{12x_{1}}{5} x_{1} - \frac{12}{5} x_{2} + \frac{12x_{2}}{5}$$

$$y_{p} = \frac{12x_{1}}{5} x_{1} - \frac{12}{5} x_{2} + \frac{12x_{2}}{5}$$

$$y_{p} = \frac{12x_{1}}{5} x_{2} + \frac{12x_{2}}{5} x_{2} + \frac{12x_{2}}{5}$$

$$y_{p} = \frac{12x_{1}}{5} x_{2} + \frac{12x_{2}}{5} x_{2}$$

the general solution

undetermined 11 into 1 > in (2)

undetermined 11 into 2 in (2)

Ofperameters of period

السَّكَلُ تَعِيشَطُ الطَّرْمَةِ الأَّوْلِي (د ا+xx		
		Ex: Consider the ODE
Yp(x)= Ax+B		M) ^ ~* ~
پنجط بيل الا <u>A</u>		$y^{(4)} + 2y''' + 2y'' = x^2 + 3 + 2e^{-x} + xe^{x} Sin_{x}$
1 = B Jis		
و سبّوفه ١٤٠١ همكررين		Lind the suitable form for your if the undetermined coefficient is to be used
بحلول الاقتصم فيصنب ب ع		undetermined coefficient istobe used
`		
yp(x)=x(Ax+B)		J _ 111
لاجع بهار ن بحليل		y4+2y"+23"=0
الاسمام عدما أعوف بلااله Ac الد B واحد		d o
برهنی حلو هوجود ۲ و ۱۸ ×۳۶ و هتما بهرب		r4+2r3+2r250
4p(x)=x2(Ax+B)		12(12+21+2)=0
o .		750,730
or yp(x)=Ax3+Bx2> sotable		(2+2(+250
		α=1, b=2, c=2
بنشق عدم مطلور بالمعاملة الأمرة هريت مريت ومرات هريت ومرات وم		b ² _4@e=
هریت م		4-4(1)(2)
J" +3"	" = 2×+ (#)	= 4 - 8 = -4
	2.2	1 ~ ~
yp(x)=Ax³+B x²		-b+1/A 5-2+1-4
$y_p(x)=3Ax^2+2Bx$		
yp (x)=5#	x +20x	-ı ±i
10 11 (1) 2 - (0) (1) 98		co vs O o · · · · e × × cos (lb)
yp"(x)=6Ax+2B		so r=0,0, -1±i exxcos(1/x)
91"(x)=6A		y1=1 y1=excosx
J (X), 9H		$g_1 = f$ $g_1 = c$ $cosx$
By Substitution in #		42=x 42=e-x sime
by babbit factor in		man talkings He. General form to
6A+6Ax+2B=2x+1		now tecking the general form to
DIT BIXTOS 3 ZXTI		Ax2+3x+C Pe-x
6Ax+(6A+2B)=2x+1		$\chi^2 + 3 + 2e^{-x} + xe^{x} \sin x$
•		general plans of the second
6AX=2X	6A+2B=1	$\frac{\chi^2 + 3 + 2e^{-x} + xe^{x} \sin x}{2e^{x}}$
_		
6A=2	6(1/3)+2B=1	$y_p(x) = (A_2 x^2 + A_1 x + A_3) \times^2$
A = 13	2+2B=1 -2 -2	سأل حاريف ال×والر الواحد على واحد
J	-2 -2	و بال حالم عن ال ال والر الواحد هل في واحد + Be - × الله و الر الم و الر الم و الر الم و الم و الم و الم
28=-1=>8=-1		-
		+(cx+D) = x sinx + (Ex+D = x cosx
sother		IJ.
		this is the general gib
$4p(x) = \frac{1}{3}x^3 - \frac{1}{2}x^2$		this is the general pix Form (cos))1.60
The general solution of is given by:		
y=yh+yp		
<u> </u>		
$= C_1 + C_2 \times + C_3 e^{x} + \frac{1}{3} \times^3 - \frac{1}{2} \times^2$		

w= w(y,,y2,y3)= 1/310 42 43	
	now returning to the subject
al love ordering	2.6.1. 45.5.
ري با يجور الله الله الله الله الله الله الله الل	Ex: Solve the ODE:-
· ·	$x^{3}y''' - 3x^{2}y'' + 6xy' - 6y = 24x', x > 0$
الم المسور) عاماء مود الثان و را	
First voice	r(r-1)(r-2)-3 r(r-1)+6r-6=0
Ex: Finel the following:-	r(r-1)(1-2)-3r(r-1) + 6(1-1)=0
() \(\mu(\x_1 \cdot \pi^2) \cdot \pi^3\)	(r-1) (r (r-2)-3r+6)=0
$(2)\omega_1(x,\chi^2,\chi^3)$	
(3) $\omega_2(x, x^2, x^3)$	(r-1) (r2-21-3r+b)=0
(y) ω3(√2, x², 20³)	
	(r-1) (r²-5r+6)=0
$\omega(x, x^2, x^3)$ χ χ^2 χ^3	(r-1)(r-2)(r-3)=0
0 2 6x	(1-1)(1-3)~0
	r=1,2,3
	y1=x, y2=x2, y3=x3
$\chi(12x^2-6x^2)-1(6x^3-2x^3)+0(3x^7-2x^9)$	
$6x^{3} - 4x^{3} = 2x^{3}$	$y_h(x) = C_1 \times + C_2 \times^2 + C_3 \times^3$
$w_1(x,x^2,x^3)$ o x^2 x^3	& we can not use undetermined
O 2× 3ײ	cofficient have become the Ulolso must be
1 2 6%	Constants
$O(2x^2 - 6x^2) - (6x^3 - 2x^3) + (3x^4 - 2x^4)$	Continued
	yp(x)= y, <u>[w1</u> r + y2 <u>[w2</u> r+y3 <u>[w3</u> r
₩ = X ⁴	مان برتبره
	ميك برتبوم ه (x, x ²) ميك برتبوم وحسناه (3x, x ²) ميك برتبوم
	91-^
$W_2(x,x^2,x^3)$ x 0 x3	$w(x_1,x_2,x_3) = 2x^3$ $y_2 = x^2$ $y_3 = x^3$
1 0 2~2	$w_1 = \chi^{4}$ $w_3 = \chi^{2}$
$-1(3x^3-x^3)$ 0 1 6x	_
3	ω2 = -2×3
$-2x^3$	
	now I only have to calculate the (r)
$\omega_3 = (x, x^2, x^3)$ x x^2 0	ال ما ال على الحديدة الحي نقسم فيما على صفاحل اله الله هي عند تعويف الدارك الم عند تعويف
1 2× 0	24x7 - write hand side
0 2 1	
1 (052,2)	
$+1 (2x^2-x^2)$ = x^2	(x) = 14x
5 ~	

 $yp(x)=x\int \frac{x^{4}}{2x^{3}} \cdot \frac{24x}{+x^{2}} \int \frac{-2x^{3}}{2x^{3}} \cdot 24x +$ $\times^3 \int \frac{\chi^2}{2x^3} \cdot 24x$ if A= a b , IAI +0 4p(x)=(x.4x3)-12 x4+12x4 then A-1 = 1 [d -b] = 4x4-12x4+12x4 = 4x4 Ex: ; f A = [1 27 then [A] ?? & [A] A-1 (Lociesion y(x)=yh+gp صطنيطل غلط 1A1=(4-6)=-2 = G X + C2 x2 + C3 x3 + 4x4 $A^{-1} = \frac{1}{2} \begin{bmatrix} 4 & -2 \\ -3 & 1 \end{bmatrix}$ Homework Solve the ODE Solution $\begin{bmatrix} -2 & 1 \\ \frac{3}{2} & \frac{-1}{2} \end{bmatrix}$ y " +y'= Secx Homogeneous Linear system with constant coefficients OAA-1=A-1A=I, where I= 5 1 0] @ consider the linear system:-الله إذا جرسي بأي معلمه veetor i vie jukes to day we will talk ay,+byz=Li about homogenous system Cy, +dj2=f2 Ay=0 this this system can be written how to solve it? $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} f_1 \\ f_2 \end{bmatrix}$ if the lAlto so the only solution is Ay = 0 A * y = \$ (2y1+dy2)= (F2) برنا نضرب الطرفيز بال⁻A A-1 A y = A-10 & that means that the colored that makes Iy=0 us go again to the first egus but if the Ay=0 IAI=0 also it can be written as many solubions & one of them iszero Ay= L non homogenous 50 if we have Ay = 0 only two I solutions homogenuous in finity many solutions y=0 donly one solution

 $\frac{\chi_{z}-\dot{\nu}_{-1}}{\sqrt{2}} \left\{ \begin{array}{c} \dot{\nu} \\ \dot{\nu} \end{array} \right\} \left\{ \begin{array}{c} \dot{\nu} \\ \dot{\nu}$ Ex: Solve: 9, =-9, +42 elecon plax Hotrix

form 32 y = [-1]

Justin X

form 32 y = [-1]

Justin X

go Heatrest Form 5 | 0 02 501+145 taking y1=0
y2=i y'= A y S = [i * to Linel the eigen values we set |A- λ I |=0 y (2) = e i - Ut [i] -1-x (-1 -1-x but we don't have to solve yz) to Find it we can use only the Lirst solution y(1) to Lind yz) (-1-x) (-1-x) - - 1=0 (1+x)(1+x)+1=0 V(1+x)2=-1 و (المنظمة ا 1+ \(= \pm \cdot \) e [-sint +i cost] λ=±i−1 ステナじー1 , ーじー1 e (cost) + i (sint)
real + imaginary we have two eigen values Choose one of them هسا بنونل ال الصلح & Corresponding skresigen veelor $\frac{(1)}{y(t)} = e^{-t} \left[\frac{\cos t}{-\sin t} \right] + i e^{-t} \left[\frac{\sin t}{\cos t} \right]$ 3=1-1 = -i | y1 = 6

3=1-1 = -i | y2 = 6

4-1 = -i | y2 = 6

4-1 = -i | y1 = 6

-i | y1 + y2 = 0

5 = i | y2 = 6 $y^{(1)}(t) = e^{-t} \left(\begin{array}{c} \cos t \\ -\sin t \end{array} \right), y^{(2)}(t) = e^{-t} \left(\begin{array}{c} \sin t \\ \cos t \end{array} \right)$ the general solution ycol= c1 et (c0 sb) + c2 et (sinf) y=1 yn = €1+6) + [i

Solve: (e-t coszt) + e-t i (-sinz) $\frac{sol}{y_2} = \begin{bmatrix} -1 & -4 \end{bmatrix} \begin{bmatrix} y_1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} y_2 \\ 1 & 2 \end{bmatrix}$ y'=[-1-4]y y(1) = et coset $(A-\lambda I) = \begin{bmatrix} -1-\lambda & -4 \\ 1 & -1-\lambda \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ 9(2) = - E - Sin2t - Sin2t (1-x)(-1-x)--4=0 regeneral solution is (-1-x)2+4=0 y(x)=C, et [coszt] + Czet [-sinze]
sinzt] + Czet [coszt] $\sqrt{(-1-\lambda)^2} = \sqrt{-4}$ -1-λ = 20 +1 +1 we discuss the casses when $\frac{-\lambda}{-}$ = +20 +1 x -1 2=1,3 -> discussed x=-1±i ⇒discussed $\chi = -2i - 1 \Rightarrow \begin{bmatrix} 2i & -4 & 41 \\ 1 & 2i & 42 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$ 2=3,3 => reported
we are going to discuss this @ equal eigen values 2ij, -4y2=0 Exisolve: 9/= 4 1 9 <u>492 = 2031</u> $(A-\lambda I) = (4-\lambda I) = 0$ 42= cg1 so that when y1=1 Θ *Θ* (4-λ)(2-λ) --1=0 5(1) (2i-1) [:] (2-4)(2-2) +1=0 = e e [i] x2-2x-4x+8+150 xe-6x+950 R-3) (x-3) 50 e [cos(2t)-isin(2t) [i] e-t [cos(2t) - i sin(2t) | 8in2t + i cos 2t 2=3, 2=3 7=3,3 reported

solve: y' [1-1] y 2=3 $A - \lambda I = \begin{bmatrix} 1 - \lambda & -1 \\ 1 & 3 - \lambda \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ A- >I) \$ 50 (1-k) (3-x)--1=0 (x-1)(x-3)+1=0 22-32-2+3+1=0 λ² - 42+4=0 (-) led is (2-2)(2-2)=0 note Wistle 1 7 = 2,2 te eigen Veelor $\lambda = 2 \Rightarrow \begin{bmatrix} -1 & -1 \\ 1 & 1 \end{bmatrix} \quad \begin{cases} 91 \\ 92 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ ممنى ي الحوين 5= 1-1 47=0 ے بی رہیں -y1-45=0 y"= e 3t [-1] 72=-71 to Lind the second solution y (2) = te & + n e 26 5= 5-17 generalizel cigen veetor بوض نفى المعادلة الى بست صمنا الرح الم يعاد الم يعون الرح الم $y^{(2)} = \begin{bmatrix} -1 & -1 \\ 1 & (\end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} -1 \\ -1 \end{bmatrix}$ to Lind n -71-72-1 - 42 = 1 - 41 42=41-1 41=0 y, + 92 = 1 M = 507 42=-1 عرف المراود من المراود المراو y(2)=tet[]+e2t[] y(t)= c, e2 [-1]+c2 e2t (t [-1]+[0]) (2) = 5 te +1 e3t te3t 1 3 + e8t 0 7 the general Solution is non-zerovedor jul y(t)=C, e36[] +c2e3t (t[])+(1)

ethlipsin

$$\begin{cases} \frac{1}{2} \\ \frac$$

Chapter 5

power socies Method

how to find my solution in form of series solution

y= Ean (x-x0)"

t what we mean a function be analytic we Seid that Lunction is analytic at the standard this function as faylor

=f(x0)+f'(x0)(x-x0)+f"(x) (x-x0)2+....

Ex: -

Oculture poly nomicals are analytic every where

2) ex, 8inx, cosx are analytic every where

3 Ractional Lunction are analytic except priviles inc

Ordinary point: xo is called ordinary point of

A(x) 4"+ B(x) 4' +C(x) 4 =0

if B(x), c(x) are analytic at Xo.

A(x) A(x) are analytic of singular building the end of the points of the points

Ex: find the ordinary points for:-

(y"+xy1 +(x2+2)4=0

the ordinary points, are all x6/R

(x-1)y"+xy"+ky=0

 $y'' + \frac{x}{x-1}y' + \frac{1}{x(x-1)}y = 0$

Singular points: X=0 &x=1

ordinary points are: /R- {0,1}

A(x)=011, ine is points

I we saked to solve a back
$$x_0=1$$
 $y^2 \le 2 a_n(x-1)^n$
 $y^3 = \sum_{n=0}^{\infty} n \alpha_n (x-1)^{n-1}$

I knowly " Final a power solves solve on of:-

Acidy " $+ x^2 y = 0$ about $x_0 = 0$
 $y^2 = \sum_{n=0}^{\infty} n \alpha_n x^{n-1}$
 $y'' = \sum_{n=1}^{\infty} n \alpha_n x^{n-1}$
 $y'' = \sum_{n=1}^{\infty} n (n-1) \alpha_n x^{n-2} + \sum_{n=2}^{\infty} \alpha_{(n-2)} x^{n}$
 $\sum_{n=2}^{\infty} n (n-1) \alpha_n x^{n-2} + \sum_{n=2}^{\infty} \alpha_{(n-2)} x^{n}$
 $\sum_{n=0}^{\infty} (n+2)(n-1+2) \alpha_n x^{n} + \sum_{n=2}^{\infty} \alpha_{(n-2)} x^{n}$
 $\sum_{n=0}^{\infty} (n+2)(n-1+2) \alpha_n x^{n} + \sum_{n=2}^{\infty} \alpha_{(n-2)} x^{n}$
 $\sum_{n=0}^{\infty} (n+2)(n-1) \alpha_n x^{n} + \sum_{n=2}^{\infty} \alpha_{(n-2)} x^{n}$
 $\sum_{n=0}^{\infty} (n+2)(n-1) \alpha_n x^{n} + \sum_{n=2}^{\infty} \alpha_{(n-2)} x^{n}$
 $\sum_{n=0}^{\infty} (n+2)(n-1) \alpha_n x^{n} + \sum_{n=2}^{\infty} \alpha_{(n-2)} x^{n}$
 $\sum_{n=0}^{\infty} (n+2)(n+1) \alpha_{(n+2)} x^{n} + \sum_{n=2}^{\infty} \alpha_{(n-2)} x^{n}$

La Recurrence relation

$$\frac{n+2=-\alpha n-2}{(n+2)(n+1)}, n \ge 2$$

$$\frac{n=3}{(5)(4)} = \frac{\alpha_1}{20} = \frac{\alpha_1}{20}$$

$$n=4$$
 $a_{6}=-a_{2}=0$ (6) (5)

$$\eta = 5$$
 $\alpha_7 = -\alpha_3 = 0$ $(7)(6)$

The solution of the D.F

$$=\alpha_0 \left[1 - \frac{\chi^4}{12}\right] + \alpha_1 \left[\chi - \frac{\chi^5}{20}\right]$$

* Find a power series solution of

$$y = \sum_{n=0}^{\infty} a_n (x-2)^n$$

$$y' = \sum_{n=1}^{\infty} na_n (x-2)^{n-1}$$
 $y'' = \sum_{n=2}^{\infty} h(n-1)a_n (x-2)$

$$\sum_{n=1}^{\infty} n(n-1)\alpha_{n}(x-2)^{n-2+2} - \sum_{n=0}^{\infty} \alpha_{n}(x-2)^{n+1-1} - \sum_{n=0}^{\infty} 2\alpha_{n}(x-2)^{n} = 0$$

$$\sum_{n=0}^{\infty} (n+2)(n+1) \alpha_{n+2}(x-2)^{n} - \sum_{n=1}^{\infty} \alpha_{n-1}(x-2)^{n} - \sum_{n=0}^{\infty} 2\alpha_{n}(x-2)^{n} = 0$$

$$2\alpha_{2} + \sum_{n=1}^{\infty} (n+2)(n+1) \alpha_{n+2}(x-2)^{n} - \sum_{n=1}^{\infty} \alpha_{n-1}(x-2)^{n} - 2\alpha_{0} + \sum_{n=1}^{\infty} 2\alpha_{n}(x-2)^{n} = 0$$

$$2\alpha_{2} - 2\alpha_{0} + \sum_{n=1}^{\infty} (n+2)(n+1) \alpha_{n+2} - \alpha_{n-1} - 2\alpha_{n} - 2\alpha_{n} - 2\alpha_{n} = 0$$

$$2\alpha_{2} - 2\alpha_{0} = 0$$

$$2\alpha_{2} - 2\alpha_{0} = 0$$

$$\alpha_{2} - 2\alpha_{0} = 0$$

$$\alpha_{1} - 2\alpha_{1} - 2\alpha_{1} - 2\alpha_{1} - 2\alpha_{1} - 2\alpha_{1} = 0$$

$$\alpha_{1} - 2\alpha_{1} - 2\alpha_{1} - 2\alpha_{1} - 2\alpha_{1} = 0$$

$$\alpha_{1} - 2\alpha_{1} - 2\alpha_{1} - 2\alpha_{1} - 2\alpha_{1} - 2\alpha_{1} = 0$$

$$\alpha_{1} - 2\alpha_{1} - 2\alpha_{1} - 2\alpha_{1} - 2\alpha_{1} = 0$$

$$\alpha_{1} - 2\alpha_{1} - 2\alpha_{1} - 2\alpha_{1} - 2\alpha_{1} = 0$$

$$\alpha_{1} - 2\alpha_{1} - 2\alpha_{1} - 2\alpha_{1} - 2\alpha_{1} = 0$$

$$\alpha_{1} - 2\alpha_{1} - 2\alpha_{1} - 2\alpha_{1} - 2\alpha_{1} = 0$$

$$\alpha_{1} - 2\alpha_{1} - 2\alpha_{1} - 2\alpha_{1} - 2\alpha_{1} = 0$$

$$\alpha_{1} - 2\alpha_{1} - 2\alpha_{1} - 2\alpha_{1} - 2\alpha_{1} = 0$$

$$\alpha_{1} - 2\alpha_{1} - 2\alpha_{1} - 2\alpha_{1} - 2\alpha_{1} = 0$$

$$\alpha_{1} - 2\alpha_{1} - 2\alpha_{1} - 2\alpha_{1} - 2\alpha_{1} = 0$$

$$\alpha_{1} - 2\alpha_{1} - 2\alpha_{1} - 2\alpha_{1} - 2\alpha_{1} = 0$$

$$\alpha_{1} - 2\alpha_{1} - 2\alpha_{1} - 2\alpha_{1} = 0$$

$$\alpha_{1} - 2\alpha_{1} - 2\alpha_{1} - 2\alpha_{1} = 0$$

$$\alpha_{1} - 2\alpha_{1} - 2\alpha_{1} - 2\alpha_{1} = 0$$

$$\alpha_{1} - 2\alpha_{1} - 2\alpha_{1} - 2\alpha_{1} = 0$$

$$\alpha_{1} - 2\alpha_{1} - 2\alpha_{1} - 2\alpha_{1} = 0$$

$$\alpha_{1} - 2\alpha_{1} - 2\alpha_{1} - 2\alpha_{1} = 0$$

$$\alpha_{1} - 2\alpha_{1} - 2\alpha_{1} - 2\alpha_{1} = 0$$

$$\alpha_{1} - 2\alpha_{1} - 2\alpha_{1} - 2\alpha_{1} = 0$$

$$\alpha_{1} - 2\alpha_{1} - 2\alpha_{1} - 2\alpha_{1} = 0$$

$$\alpha_{1} - 2\alpha_{1} - 2\alpha_{1} - 2\alpha_{1} = 0$$

$$\alpha_{1} - 2\alpha_{1} - 2\alpha_{1} - 2\alpha_{1} = 0$$

$$\alpha_{1} - 2\alpha_{1} - 2\alpha_{1} - 2\alpha_{1} = 0$$

$$\alpha_{1} - 2\alpha_{1} - 2\alpha_{1} - 2\alpha_{1} = 0$$

$$\alpha_{1} - 2\alpha_{1} - 2\alpha_{1} - 2\alpha_{1} = 0$$

$$\alpha_{1} - 2\alpha_{1} - 2\alpha_{1} - 2\alpha_{1} = 0$$

$$\alpha_{1} - 2\alpha_{1} - 2\alpha_{1} - 2\alpha_{1} = 0$$

$$\alpha_{1} - 2\alpha_{1} - 2\alpha_{1} - 2\alpha_{1} = 0$$

$$\alpha_{1} - 2\alpha_{1} - 2\alpha_{1} - 2\alpha_{1} = 0$$

$$\alpha_{1} - 2\alpha_{1} - 2\alpha_{1} - 2\alpha_{1} = 0$$

$$\alpha_{1} - 2\alpha_{1} - 2\alpha_{1} - 2\alpha_{1} = 0$$

$$\alpha_{1} - 2\alpha_{1} - 2\alpha_{1} - 2\alpha_{1} = 0$$

$$\alpha_{1} - 2\alpha_{1} - 2\alpha_{1} - 2\alpha_{1} = 0$$

$$\alpha_{1} - 2\alpha_{1} - 2\alpha_{1} - 2\alpha_{1} = 0$$

$$\alpha_{1} - 2\alpha_{1} - 2\alpha_{1} - 2\alpha_{1} = 0$$

$$\alpha_{1} - 2\alpha_{1} - 2\alpha$$

محسوبة خوقه [23 ١٧]

$$N=2$$
 $OLY = a_1 + 2a_2 = a_1 + a_2$

$$(3)(4) 12 6$$

The solution is: -

Regular Singular Points

$$A(x)y'' + B(x)y' + C(x)y = 0$$
 $B(x)$ Framelytic

 $C(x)$ Framelytic

 $A(x)=0 \Rightarrow x_0$ is signer $A(x)=0$ only

regular irregular

X. ? singular?

Shouits lie

(2) him C(x) (x-xa)2 000 7 x→xo A(x) if both of them is exist sores

Jeleces orig one point com be clerkified by regular of the point of the point

إذا لقينَ لمنز هاي أدنه ؟ بدي أصميرما ، إ

if Xo: regular singular inetial equations

inetial equation: r(r-1)+por+ 9,000

* Example: Final all regular Singular points

() (x2-4x+3)y" +4xy' +2xy=0

$$(x^{2}-4x+3)$$

 $(x-3)(x-1)=0$
 $x=3$, $x=1$
La singular points

at xo=1

$$\lim_{x\to 1} \frac{u_x}{x^2-u_x} (x-1)$$

$$\lim_{x\to 1} \frac{2x}{x^2-4x+3} \frac{(x-1)^2}{(x-1)(x-3)^2} = \frac{2x(x-1)^2}{x-3} = \frac{2x(x-1)}{x-3} = 0$$

these two are exist so the point xo=1 is regular singular

X0=3

$$\lim_{x \to 3} \frac{u_x}{x^2 - u_{x+3}} = \frac{u_x}{x-1} = \frac{1}{-2} = -6$$

Lim 2x X-3 X2-4X+3 (X-1)2 him 2x cx st (x/s) (x-3) $\lim_{x \to 2} \frac{2 \times (x \to 1)}{x \to 2} = \lim_{x \to 2} \frac{4(1)}{-1} = \frac{4}{2}$ S> X0=3 is also regular singular point the set of all regular singular points is [1,3] # Find the inetical equestion for such regular singular points for xo=1 r(r-1)+por+90=0 8(1-1)-25=0 r2-1-2550 12-31=0 * O: find the roots of the inetical equation r2-3r=0 r(1-3)=0 r=0,3 # find we regular singular points X(X+2)2 y"+(x+1) y"+2xy50 x (x+2)2 50 At xo=0 $\lim_{X\to0} \frac{(X+1)}{\chi(X+2)^2} \cdot \chi = \frac{X+1}{(X+2)^2} \cdot \frac{1}{Y}$ set of regular singular $\lim_{x \to 0} \frac{2x}{(x+2)^2} x^2 = \frac{2x}{(x+2)^2} = 0$ points (03 -: (of) institut 11 is out 1:1 So x0=0 is regular singular point LC1-1)+ DO1+ 4020 $\lim_{x\to 2} \frac{(x+1)}{x(x+2)^2} (x+2) = \frac{x+1}{x(x+2)} = \frac{-4}{0} D. N. E$ 1(1-1)+ 41=0 (2-r+dr=0 => 12-31=0

```
arount a point & this point will be reguler singular
                                 2x2y"+(x2-x)y)+y=0 new x0=0 بالا-2x2y"
\Rightarrow xo is regular singular 30 to be a solution n=0 to be a solution
                      y' = \sum_{n=0}^{\infty} (n+r) \alpha_n \chi^{n+r-1}
                        7 = 5 (N+L) (N+L-1) 01 × N+L-5
                                                                                                    فيومنع بالمعادلة
                 2x2 \( \langle (n+1) \langle (n+1) \angle n=0 \\ n=0 \\ \langle \langl
           \leq 2(N+1)(N+r-1)QNXX + \sum_{N=0}^{N=0} (N+r)QNX^{N+r+1-1} \leq (N+r)QNX^{N+r} + \leq QNX^{N-1}QNX^{N-1}
          ≥ 2 (n+r) (n+r-1) α, x n+r + ≥ (n+r-1) αn-1x n+r ≥ (n+r) α, x n+r + ≥ α, x -0

N=0

N=0

N=0

N=0

N=0

N=0
       + 00x7+ & 0x xn+r=0
             2r(1-1)aox1-raox1+aox1
               \sum_{N=1}^{\infty} \left( 2(N+r)(N+r-1)\alpha_N + (N+r-1)\alpha_{N-1} \right) - \left( N+r \right) + \alpha_N + \alpha_N \right) x^{n+r}
                        a. xr (2r(1-1)-1+1)
              + \sum_{n=1}^{\infty} (2(n+r)(n+r-1) + -(n+r)+1) \alpha n + (n+r-1) \alpha n + \int_{-\infty}^{\infty} x^{n+r} = 0
```

$$(2r(r-1)-r+1) a_{0}=0 \implies 2(^{2}-3r+1=0)$$

$$(2r(r-1)-r+1) a_{0}=0 \implies 2(^{2}-3r+1=0)$$

$$(2(n+r)(n+r-1)-(n+r)+1) a_{0}=-(n+r-1)a_{0}-1$$

$$(2(n+r)(n+r-1)-(n+r-1)) a_{0}=-(n+r-1)a_{0}-1$$

$$(2(n+r)(n+r-1)-(n+r-1)) a_{0}=-(n+r-1)a_{0}-1$$

$$(2(n+r)(n+r-1)-(n+r-1)) a_{0}=-(n+r-1)a_{0}-1$$

$$\frac{2(n+r)-1}{2(n+r)-1}$$

212-31+1=0 & his is another method to final the inetical equation (2Y-1)(Y-1)=0

r=1

why do we calculate the roots

for this? because we have

$$rac{2(n+1)-1}{2(n+2-1)}$$

$$\frac{\alpha_{N} - \alpha_{N-1}}{2^{N+1}}, n \geqslant 1$$

$$\sqrt{\frac{x}{5}} = \frac{1}{5} \times \frac{\alpha_0}{3} = \frac{1}{15} \alpha_0$$

$$\frac{y_1 = \alpha_0\left(x + \frac{x^2}{15} - \frac{x^3}{105}\right)}{15 - \frac{105}{105}}$$
Solution
$$\frac{y_1 = \alpha_0\left(x + \frac{x^2}{15} - \frac{x^3}{105}\right)}{105}$$

to Line the second solution substitute $\Gamma = \frac{1}{2}$

$$\alpha_{n} = -\alpha_{n-1}$$

$$\frac{2(n+\frac{1}{2})-1}{2(n+\frac{1}{2})-1}$$

$$\frac{\alpha_{n} = -\alpha_{n-1}}{2n+1-1}$$

$$\frac{\alpha_{n}=\frac{-\alpha_{n-1}}{2n}}{n}$$

$$= \frac{3}{2} \times \frac{3}{2} \times \frac{5}{2} \times \frac{3}{2} \times \frac{5}{2} \times \frac{3}{2} \times \frac{$$

$$00 \left[\frac{x^{\frac{1}{2}} - \frac{1}{2}x + \frac{1}{8}x^{5/2}}{3} \right]$$

Remark:
$$\alpha_1 = -\alpha_0$$

$$2.1$$

$$\alpha_2 = \frac{(-\alpha_1)}{2.2} = \frac{\alpha_0}{2^2 (6)(1)}$$

$$\alpha_3 = \frac{(-\alpha_2)}{2.3} = -\alpha_0$$

$$2^3 = \frac{(-\alpha_2)}{2^3 (2 \times 10)(1)}$$

```
# when calculate the roots of inetical equation we have three causes:
    (⇒ 1,>12 and 1,-12 € Z ( and 1,-12 € Z (
             there exist two hinearly independent solutions:
                                         y, (x)= \ ax x x x x x , a = 0
                                        y<sub>2</sub>(x) = ε αx x<sup>n+r<sub>2</sub></sup>, αο ≠δ
   2 ⇒ 1,>12 and 1-12 EZ
              there exist two Linearly independent solutions:

we be y_{n}(x) = \sum_{n=0}^{\infty} \alpha_{n} x^{n+r_{1}}, \alpha_{0} \neq 0

will n=0
                       المُون مِن النَّاي کِ وَجُود و مِن النَّاي کِ اللَّهُ الْمُون مِن النَّاي کِ اللَّهُ اللَّا اللَّا اللَّهُ اللَّهُ اللَّهُ اللَّهُ اللَّهُ اللَّهُ اللَّهُ اللَّهُ ا
                                                          C:a constant which may be Zero lax
so the second solution many contain a Logar: thm
   3=7=5=r
           4)(x) = \( \int \alpha_{\pi} \chi^{\pi} \), do \( \phi \)
  42(X)= 4,(x) ln x + ξ an χn+r
    - So the second solution will always contain a Loya rithm
Ex: consider xy"-xy'+y=0
   O Show that X50 is regular singular
  2) Determine the roots of the indicial equation at xo=0
 3) Find the Frobenius series solution corresponding to the Longerroot
  1 what would be the form of the second Linearly independent solution.
  him \frac{-x}{x} \cdot (x) = -x = 0

x \to 0
q_0 both are exist so x_0 is a regular Singular point x \to 0
```

```
r(r-1)+por+qo=0
                                                                                                                                                                            T(1-1) +0+0=0
                                                                                                                                                                                                                                        M=1 , 12 50
  Sal.371>12 11-12-€&
                                                                                                                \frac{4}{1}(x) = \sum_{n=0}^{\infty} a_n x^{n+1}
                                             ار (x)= {(n+1) an xn المرادة 
y (x)= ξ(n+1) η Oln χ -1

- n=1
                                                                                         x y"-xy'+y=0
                                                  x \leq (n+1) n \alpha_n x^{n-1} - x \leq (n+1) \alpha_n x^n + \leq \alpha_n x^{n+1}
                                         \( \lambda (n+1) n \an \times \frac{\( \tau - \)}{\( \tau - \)} \( \( \tau + \) \( \an \) \( \tau - \) \( \t
                      \sum_{n=0}^{\infty} (n+2)(n+1) \alpha_{n+1} \times \sum_{n=0}^{\infty} (n+1) \alpha_n \times \sum_{n=0}^{\infty} \alpha_n \times \sum_{n=0}
                                  \sum_{n=1}^{\infty} ((n+2)(n+1)\alpha_{n+1} - (n+1)\alpha_{n} + \alpha_{n}) x^{n+1}
```

$$\sum_{n=0}^{\infty} \frac{(n+2)(n+1)\alpha_{n+1} - (n+1)\alpha_{n} + \alpha_{n}}{(n+2)(n+1)\alpha_{n+1} - (n+1)\alpha_{n} + \alpha_{n} = 0}$$

$$\alpha_{n+1} = \frac{(n+1)\alpha_{n} - \alpha_{n}}{(n+1)(n+2)}$$

$$\frac{\alpha_{n+1} = h\alpha_n + \alpha_n - \alpha_n}{(n+1)(n+2)}, n \ge 0$$

 $\frac{(n+1) = N\alpha n}{(n+1)(n+2)}$

$$n=0$$
 $\alpha_1=0$ $\alpha_2=\frac{\alpha_1}{(2)(3)}=\frac{\alpha_1}{6}=\frac{\alpha_1}{6}=0$

Cherp ter 6

$$\chi(\mathcal{T}(t) = \int f(t) e dt = f(s)$$

Example: Final
$$L [S]:- step = step$$

note = = 0

e = 00

$$\Rightarrow l\{a\} = \frac{\alpha}{5}, S>0$$

$$\Rightarrow l\{e\} = \frac{1}{5}, S>0$$

$$\begin{array}{l}
\Rightarrow \int_{S^{+}} \left\{ t^{n} \right\} = \frac{n!}{S^{+} + \alpha^{2}}, S > 0 \\
\Rightarrow \int_{S^{+} + \alpha^{2}} \left\{ \left\{ cosh(ab) \right\} = \frac{\alpha}{S^{+} + \alpha^{2}}, S > 0 \\
\Rightarrow \int_{S^{+} + \alpha^{2}} \left\{ \left\{ cosh(ab) \right\} = \frac{S}{S^{+} + \alpha^{2}} \right\} \\
\Rightarrow \int_{S^{+} + \alpha^{2}} \left\{ \left\{ cosh(ab) \right\} = \frac{S}{S^{+} + \alpha^{2}} \right\} \\
\Rightarrow \int_{S^{+} + \alpha^{2}} \left\{ \left\{ cosh(ab) \right\} = \frac{S}{S^{+} + \alpha^{2}} \right\} \\
\Rightarrow \int_{S^{+} + \alpha^{2}} \left\{ \left\{ cosh(ab) \right\} = \frac{S}{S^{+} + \alpha^{2}} \right\} \\
\Rightarrow \int_{S^{+} + \alpha^{2}} \left\{ \left\{ cosh(ab) \right\} = \frac{S}{S^{+} + \alpha^{2}} \right\} \\
\Rightarrow \int_{S^{+} + \alpha^{2}} \left\{ \left\{ cosh(ab) \right\} = \frac{S}{S^{+} + \alpha^{2}} \right\} \\
\Rightarrow \int_{S^{+} + \alpha^{2}} \left\{ \left\{ cosh(ab) \right\} = \frac{S}{S^{+} + \alpha^{2}} \right\} \\
\Rightarrow \int_{S^{+} + \alpha^{2}} \left\{ \left\{ cosh(ab) \right\} = \frac{S}{S^{+} + \alpha^{2}} \right\} \\
\Rightarrow \int_{S^{+} + \alpha^{2}} \left\{ \left\{ cosh(ab) \right\} = \frac{S}{S^{+} + \alpha^{2}} \right\} \\
\Rightarrow \int_{S^{+} + \alpha^{2}} \left\{ \left\{ cosh(ab) \right\} = \frac{S}{S^{+} + \alpha^{2}} \right\} \\
\Rightarrow \int_{S^{+} + \alpha^{2}} \left\{ \left\{ cosh(ab) \right\} = \frac{S}{S^{+} + \alpha^{2}} \right\} \\
\Rightarrow \int_{S^{+} + \alpha^{2}} \left\{ \left\{ cosh(ab) \right\} = \frac{S}{S^{+} + \alpha^{2}} \right\} \\
\Rightarrow \int_{S^{+} + \alpha^{2}} \left\{ \left\{ cosh(ab) \right\} = \frac{S}{S^{+} + \alpha^{2}} \right\} \\
\Rightarrow \int_{S^{+} + \alpha^{2}} \left\{ \left\{ cosh(ab) \right\} = \frac{S}{S^{+} + \alpha^{2}} \right\} \\
\Rightarrow \int_{S^{+} + \alpha^{2}} \left\{ \left\{ cosh(ab) \right\} = \frac{S}{S^{+} + \alpha^{2}} \right\} \\
\Rightarrow \int_{S^{+} + \alpha^{2}} \left\{ \left\{ cosh(ab) \right\} = \frac{S}{S^{+} + \alpha^{2}} \right\} \\
\Rightarrow \int_{S^{+} + \alpha^{2}} \left\{ \left\{ cosh(ab) \right\} = \frac{S}{S^{+} + \alpha^{2}} \right\} \\
\Rightarrow \int_{S^{+} + \alpha^{2}} \left\{ \left\{ cosh(ab) \right\} = \frac{S}{S^{+} + \alpha^{2}} \right\} \\
\Rightarrow \int_{S^{+} + \alpha^{2}} \left\{ \left\{ \left\{ cosh(ab) \right\} \right\} \\
\Rightarrow \int_{S^{+} + \alpha^{2}} \left\{ \left\{ \left\{ cosh(ab) \right\} \right\} \\
\Rightarrow \int_{S^{+} + \alpha^{2}} \left\{ \left\{ \left\{ cosh(ab) \right\} \right\} \\
\Rightarrow \int_{S^{+} + \alpha^{2}} \left\{ \left\{ \left\{ cosh(ab) \right\} \right\} \\
\Rightarrow \int_{S^{+} + \alpha^{2}} \left\{ \left\{ \left\{ cosh(ab) \right\} \right\} \\
\Rightarrow \int_{S^{+} + \alpha^{2}} \left\{ \left\{ \left\{ cosh(ab) \right\} \right\} \\
\Rightarrow \int_{S^{+} + \alpha^{2}} \left\{ \left\{ \left\{ cosh(ab) \right\} \right\} \\
\Rightarrow \int_{S^{+} + \alpha^{2}} \left\{ \left\{ \left\{ cosh(ab) \right\} \right\} \\
\Rightarrow \int_{S^{+} + \alpha^{2}} \left\{ \left\{ \left\{ cosh(ab) \right\} \right\} \\
\Rightarrow \int_{S^{+} + \alpha^{2}} \left\{ \left\{ \left\{ cosh(ab) \right\} \right\} \\
\Rightarrow \int_{S^{+} + \alpha^{2}} \left\{ \left\{ \left\{ cosh(ab) \right\} \right\} \\
\Rightarrow \int_{S^{+} + \alpha^{2}} \left\{ \left\{ \left\{ cosh(ab) \right\} \right\} \\
\Rightarrow \int_{S^{+} + \alpha^{2}} \left\{ \left\{ \left\{ cosh(ab) \right\} \right\} \\
\Rightarrow \int_{S^{+} + \alpha^{2}} \left\{ \left\{ \left\{ cosh(ab) \right\} \right\} \\
\Rightarrow \int_{S^{+} + \alpha^{2}} \left\{ \left\{ \left\{ cosh(ab) \right\} \right\} \\
\Rightarrow \int_{S^{+} + \alpha^{2}} \left\{ \left\{ \left\{ cosh(ab) \right\} \right\} \\
\Rightarrow \int_{S^$$

 $\frac{1}{2}\left[\frac{1}{5} - \frac{5}{5^2 + 4}\right]$

$$\frac{E \times i}{0 \text{ ℓ ($sin3t$]} = 3} = 3$$

$$\frac{2 \text{ ℓ ($sin3t$]} = 3}{5^2 + 9} = 3$$

$$\frac{2 \text{ ℓ (e^{2t} $sin3t$)} = 3}{5^2 + 9} = 3$$

$$\frac{3 \text{ ℓ (e^{-2})}^2 + 9}{5^2 + 9} = 3$$

32 {
$$t^3e^{2t}$$
} = 3! = $\frac{6}{S^4}$ = $\frac{6}{(S-2)^4}$

$$=\frac{S}{S^2+Y}$$
 $=\frac{S}{(S+3)^2+Y}$

inake ou has cut

$$0$$
 $\frac{1}{2}$ $\left(\frac{2.1}{5^3}\right) = \frac{1}{2} + \frac{t^2}{2}$

$$\frac{3}{3}h^{-1}\left(\frac{2\cdot\frac{3}{3}}{S^2+9}\right) = \frac{2}{3} \sin(3t)$$

$$\frac{5}{2!} \left\{ \frac{1.2!5}{5^3} = \frac{1}{2!} t^2 = \frac{1}{2} t^2$$

6
$$\ell^{-1}(\frac{5}{5^{4}}) = 5\ell^{-1}(\frac{1}{5^{4}}) = 5\ell^{-1}(\frac{1.3!}{5^{4}}) = 5\ell^{-1}(\frac{1.3!}{5^{4}$$

$$\frac{9}{2!} \left(\frac{1.2}{53} \right) = \frac{1}{2} t^2$$

$$4 \int_{0}^{1} \left(\frac{3}{S^{3}} + \frac{S}{S^{2}+4} \right)$$

= 3
$$\frac{1}{53}$$
 + cos3t

$$=\frac{3}{9}$$
 $t^2 + \cos 3t$

11)
$$L^{-1}\left(\frac{1\cdot 2}{(s-1)^2+4}\right) = \frac{1}{2} L^{-1}\left(\frac{2}{(s-1)^2+4}\right) = \frac{1}{2} \sin 2t e^{t}$$

$$\frac{12}{3} \left\{ \frac{(s-2)\cdot 3}{(s-2)^2+4} \right\} = \frac{1}{3} \left\{ \frac{(s-2)}{(s-2)^2+4} \right\} = \frac{1}{3} \cos 3t e^{2t}$$

$$\frac{13}{3!} \left(\frac{1}{(s-2)^4} \right) = \frac{1}{6} \left(\frac{3!}{(s-2)^7} \right)$$

$$(\frac{1}{4})$$
 $\frac{1}{2}$ $\left\{\frac{1}{(5-1)^2+4}\right\} = \frac{1}{2} \sin(2t)e^{t}$

$$(5) \chi^{-1} \left\{ \frac{5-2}{(5-2)^{2+1}} \right\} = \sin t e^{2t}$$

$$\frac{(6) \int_{-1}^{-1} \left\{ \frac{(5-2)^2+4}{(5-2)^2+4} \right\} = \int_{-1}^{-1} \left\{ \frac{s-2}{(s-2)^2+4} \right\} + \int_{-1}^{-1} \left\{ \frac{s}{(s-2)^2+4} \right\}$$

$$\frac{2}{S^{2}+4S+5} = R^{-1} \left\{ \frac{(S+1+1)}{(S+2)+1} \right\}$$

$$= R^{-1} \left\{ \frac{S+2}{(S+2)+1} \right\} + R^{-1} \left\{ \frac{-1}{(S+2)+1} \right\}$$

$$= e^{2t} \left\{ \cos(t) - \sin(t) \right\}$$

$$= e^{2t} \left\{ \cos(t) - \sin(t) \right\}$$

$$\frac{2s+1}{(s-1)^{2}+4} = \frac{1}{2} \left\{ \frac{2(s-1)+3}{(s-1)^{2}+4} \right\}$$

$$= 2 \left\{ \frac{(s-1)}{(s-1)^{2}+4} \right\} = \frac{3 \cdot 2}{2} \left\{ \frac{3 \cdot 2}{(s-1)^{2}+4} \right\}$$

$$= 2 \left\{ \frac{(s-1)}{(s-1)^{2}+4} \right\} = \frac{3 \cdot 2}{2} \left\{ \frac{3 \cdot 2}{(s-1)^{2}+4} \right\}$$

$$= 2 \left\{ \frac{2(s-1)+3}{(s-1)^{2}+4} \right\} = \frac{3 \cdot 2}{2} \left\{ \frac{3 \cdot 2}{(s-1)^{2}+4} \right\}$$

$$= 2 \left\{ \frac{2(s-1)+3}{(s-1)^{2}+4} \right\} = \frac{3 \cdot 2}{2} \left\{ \frac{3 \cdot 2}{(s-1)^{2}+4} \right\}$$

unit step function "Herriside Runction"

$$u(t-\alpha) = \begin{cases} 0 & 0 < t < \alpha \\ 1 & t > \alpha \end{cases}$$

$$u(t-\alpha) = \begin{cases} 1 & (t) = 0 \\ u(t) = 1 \end{cases}$$

$$u(t) = 1 \qquad \text{constant Euction}$$

Exif
$$f(t) = t^2 + u(t-1)$$
, $f(t) = t^2$

$$f(2) = 2^2 + u(2-1)$$

$$= 4 + 1 = 5$$

$$f(\frac{1}{2}) = (\frac{1}{2})^2 + 0 = \frac{1}{4}$$

$f(u(t-\alpha)) = e^{-\alpha t}$

$f(u(t-\alpha)) = e^{-\alpha t}$

$f(u(t-\alpha)) = e^{-\alpha t}$

Singular substitution of the content of the con

Sin
$$(\frac{\pi}{2} - t) = \cos(x) \sin(x) = \frac{\pi}{2}$$

Sin $(\frac{\pi}{2} - t) = \cos(x) = \cos(x)$

Cost $\rightarrow \sin(x)$

$$\cos(\frac{\pi}{2}+t)=-\sin t$$
 $\sin t \rightarrow \cos t$

2 L t u(t-2)] =
$$e^{2S}$$
 L [t+2] = e^{2S} $\left[\frac{1}{S^2} + \frac{2}{S}\right]$

3
$$f[t^2 u(t-1)] = e^{-S} f[(b+1)]$$

$$= e^{-S} f[(t^2+2b+1)]$$

$$e^{-S} \left[\frac{2}{S^3} + \frac{2}{S^2} + \frac{1}{S}\right]$$

$$\frac{4}{4} \text{ leint } u(t-t) = e^{\frac{\pi}{2}} \text{ sin}(t+t)$$

$$= e^{\frac{\pi}{2}} \text{ leost}$$

$$= e^{\frac{\pi}{2}} \text{ leost}$$

$$= e^{\frac{\pi}{2}} \text{ solution}$$

(5)
$$L(e^{2t} u(t-3)) = e^{-3S} L(e^{2t+6})$$

$$= e^{-3S} L(e^{2t+6})$$

$$= e^{-3S} L(e^{6}, e^{2t})$$

$$= e^{-3S} e^{6} L(e^{2t})$$

$$= e^{-3S} e^{6} L(e^{2t+3})$$

$$= e^{-3S} e^{6} L(e^{2t+3})$$

$$= e^{-3S} L(e^{5})$$

or
$$\ell\left\{e^{2t} u(t-3)\right\} = \frac{e^{3S}}{S} = \frac{e^{-3(S-2)}}{S}$$

6
$$L[te^{5t} u(t-2)] = L[tu(t-2)]$$

$$= e^{2s} L[t+2]$$

$$= e^{2s} \left[\frac{1}{s^2} + \frac{2}{s}\right]$$

$$= e^{2(s-5)} = e^{2(s-5)^2} (s-5)$$

$$= e^{2s+10} \left[\frac{1}{(s-5)^2} + \frac{2}{(s-5)}\right]$$

Remark: Let
$$f(t) = f_1(t)$$
, $0 \le t \le a$ | Laplace 11 - we with $f_2(t)$, $a \le t \le b$ | $f_3(t)$, $t \ge b$

Then we can rewrite f(t) as follows:

$$\frac{1}{S^2} = e^{-2S} \cdot L[t+2]$$

$$\frac{1}{S^2} - e^{2S} \cdot \left[\frac{1}{S^2} + \frac{2}{S} \right]$$

$$\frac{1}{2} \left\{ \frac{Se^{-S}}{S^2-1} \right\} = u(t-1) \left\{ \frac{S}{S^2-1} \right\}$$

$$\left\{\frac{e^{-23}+5}{5^2}\right\} =$$

$$u(\varepsilon-2)$$
. $\int_{-1}^{-1} \left\{ \frac{1}{S^2} \right\} + \int_{-1}^{1} \left\{ \frac{1}{S} \right\}$

$$a(t-2)$$
 $t \Big|_{t-2}$ + 1

$$= u(t-2)(t-2)+1$$

$$\frac{1}{S(S+1)} = \frac{A}{S} + \frac{B}{S+1} = \frac{A(S+1) + BS}{S(S+1)}$$

So flat
$$\frac{1}{SCs+U} = \frac{1}{S} - \frac{1}{S+U}$$

$$\frac{1}{SCs+U} = \frac{1}{S} - \frac{1}{S+U}$$

$$\frac{1}{SCs+U} = \frac{1}{S} - \frac{1}{S}$$

$$\frac{1}{SCs+U} = \frac{1}{S} - \frac{1}{S}$$

$$\frac{1}{SCs+U} = \frac$$

$$0$$
 $\mathcal{L}^{-1}\left\{\frac{1}{S(S+1)}\right\}$

$$\frac{1}{S(S+1)} = \frac{A}{S} + \frac{B}{S+1} = \frac{1}{S} - \frac{1}{S+1}$$

لى طلعناهم عدقه

$$L^{-1}\left\{\frac{1}{5}\right\}-L^{-1}\left\{\frac{1}{5+1}\right\}$$

$$\begin{array}{c} = 1 - e^{\frac{\pi}{2}} & \text{Cosh sinh, sin, cos} & 1 \text{ Talker colored} \\ \text{producted from from the production of the$$

Dirae Delta Function

is generalized Lunction (distribution) which can be Characterized by the Lollowing properties (-

$$\int S(t-a) = \begin{cases} 0 & t=a \\ 0 & t=a \end{cases}$$

$$S(t) = \begin{cases} 0, t=0 \\ 0, t \neq 0 \end{cases}$$

$$\int S(t) dt = 1$$

Theorem: if get) is continuous lunetion, than

Example: Find:-

$$\int_{-\infty}^{\infty} \frac{S(t) \cos t}{S(t-0)} dt = \cos 0 = 1$$

theorem: for a > 0 and g (+) continuous:

Example:-

Example: solve:
$$y'' + \pi^2 y = S(t-1)$$

$$\frac{1}{4}S^{2} + Sy(0) - y(0) + \pi^{2} y_{S} = e^{-S}$$

$$5^{2}$$
Ys + S + π^{2} Ys = e^{-5}

$$y_{s} = \chi^{-1} \left(\frac{e^{-3} - S}{S^2 + \pi^2} \right)$$

$$\frac{-d}{d8} \cdot \frac{2}{(s^2+4)^2} = \frac{-(-2)2s}{(s^2+4)^2} = \frac{4s}{(s^2+4)^2}$$

3
$$L \{ t 8n^{2}t \}$$

= $\frac{1}{2} \{ (1 - \cos 2t) \}$

= $\frac{1}{2} L \{ (1 - \cos 2t) \}$

= $\frac{1}{2} L \{ (1 - \cos 2t) \}$

= $\frac{1}{2} L \{ (1 - \cos 2t) \}$

= $\frac{1}{2} L \{ (1 - \cos 2t) \}$

= $\frac{1}{2} L \{ (1 - \cos 2t) \}$

= $\frac{1}{2} L \{ (1 - \cos 2t) \}$

= $\frac{1}{2} L \{ (1 - \cos 2t) \}$

= $\frac{1}{2} L \{ (1 - \cos 2t) \}$

= $\frac{1}{2} L \{ (1 - \cos 2t) \}$

= $\frac{1}{2} L \{ (1 - \cos 2t) \}$

= $\frac{1}{2} L \{ (1 - \cos 2t) \}$

= $\frac{1}{2} L \{ (1 - \cos 2t) \}$

= $\frac{1}{2} L \{ (1 - \cos 2t) \}$

= $\frac{1}{2} L \{ (1 - \cos 2t) \}$

= $\frac{1}{2} L \{ (1 - \cos 2t) \}$

= $\frac{1}{2} L \{ (1 - \cos 2t) \}$

= $\frac{1}{2} L \{ (1 - \cos 2t) \}$

= $\frac{1}{2} L \{ (1 - \cos 2t) \}$

= $\frac{1}{2} L \{ (1 - \cos 2t) \}$

= $\frac{1}{2} L \{ (1 - \cos 2t) \}$

= $\frac{1}{2} L \{ (1 - \cos 2t) \}$

= $\frac{1}{2} L \{ (1 - \cos 2t) \}$

= $\frac{1}{2} L \{ (1 - \cos 2t) \}$

= $\frac{1}{2} L \{ (1 - \cos 2t) \}$

= $\frac{1}{2} L \{ (1 - \cos 2t) \}$

= $\frac{1}{2} L \{ (1 - \cos 2t) \}$

= $\frac{1}{2} L \{ (1 - \cos 2t) \}$

= $\frac{1}{2} L \{ (1 - \cos 2t) \}$

= $\frac{1}{2} L \{ (1 - \cos 2t) \}$

= $\frac{1}{2} L \{ (1 - \cos 2t) \}$

= $\frac{1}{2} L \{ (1 - \cos 2t) \}$

= $\frac{1}{2} L \{ (1 - \cos 2t) \}$

= $\frac{1}{2} L \{ (1 - \cos 2t) \}$

= $\frac{1}{2} L \{ (1 - \cos 2t) \}$

= $\frac{1}{2} L \{ (1 - \cos 2t) \}$

= $\frac{1}{2} L \{ (1 - \cos 2t) \}$

= $\frac{1}{2} L \{ (1 - \cos 2t) \}$

= $\frac{1}{2} L \{ (1 - \cos 2t) \}$

= $\frac{1}{2} L \{ (1 - \cos 2t) \}$

= $\frac{1}{2} L \{ (1 - \cos 2t) \}$

= $\frac{1}{2} L \{ (1 - \cos 2t) \}$

= $\frac{1}{2} L \{ (1 - \cos 2t) \}$

= $\frac{1}{2} L \{ (1 - \cos 2t) \}$

Example: - Linel
$$L^{-1}(f(s)) = L(t)$$
 In, Cot^{-1} , $tenn^{-1}$ is haplace) by liquid the series of the first series $L^{-1}(f(s)) = L(t)$ In $L^{-1}(f(s)) = L(t)$ In

$$F(S) = \ln(S^{2}+4) - 2 \ln S$$

$$\frac{1}{F(S)} = \frac{2S}{S^{2}+4} - 2\frac{1}{S}$$

$$(-1)^{2} = 1 - 1 = 25 = 2$$

$$\frac{-t + f(t) = 2 \cos(2t) - 2}{-t}$$

$$f'(s) = \frac{1}{s} - \frac{1}{s-1}$$

$$\# \int_{-1}^{-1} \left[\ln \frac{8^2+1}{(5-1)^2} \right]$$

$$F(S) = \ln(S^2+1) - 2\ln(S-1)$$

$$\frac{1}{1+\frac{S^2}{M^2}}$$

$$f(t) = Sin \pi t$$

The constant
$$y = f(c) = \frac{1}{2} \sin y + \frac{1}$$

$$\frac{1}{2} \frac{1}{2} \left(\frac{1}{5^{2}(S^{2}+1)} \right) + \frac{1}{2} \left(\frac{1}{5(S^{2}+1)} \right) = 1 - \cos t$$

$$\ell^{-1} \left\{ \frac{1}{5(s^2+1)} \right\} = \int_{-\infty}^{\infty} 1 - \cos t = 1 - \sin t$$

$$t - \sin t - [0 - \sin 0]$$