University of Jordan School of Engineering Industrial Engineering Department

EXPERIMENT#7 REPORT

Aiming and Steadiness

Student Name	ID
1. Abdallah Assad	0194937
2. Mohammad Bassam	0183840
3. Mohammad Amr	0184089
4.Mohammad Burghol	0161096

TABLE OF CONTENTS

Objective	3
Introduction	3
Instruments	4
Procedure	5
Collected/ Calculated data	5
A1	6
A2	8
B	9
Conclusion	10

Objective:

- Measure the aspects of Aiming, eye-hand coordination.
- Measure the aspects of steadiness, arm-hand coordination.

Introduction:

Aiming is the ability to move one's hand to a precise stationary position. It differs from arm-hand steadiness in that aiming requires the person to move the hand to a particular position, rather than just holding it stationary. These abilities are highly related to precision working; it is most easily seen in dentistry where the dentist moves the drill to the precise, appropriate position on the affected tooth.

Arm-hand steadiness is the ability to hold one's hand and arm in a specific position for a relatively short period of time. This ability is highly related to the category of precision working. Specifically, it can be seen in the occupations of dentistry or watch repair. In these jobs, tools need to be held in a precise position for at least a short period of time. This factor does not involve eye-hand coordination, as is the case with the aiming factor.

Instruments:

Hole plate is a manipulative dexterity test. The subject's task is to hold a metal-tipped stylus in 9 progressively smaller hole sizes stationary without touching the sides.

Hole diameters: 1.156, 1.125, .5, .312, .25, .187, .109, .093, .078 inches.

Stylus diameter: .0625

Figure1: Hole plate

Figure2: slot type grooved steadiness tester

Procedure:

A. For Aiming experiment

- 1. The person stands at a comfortable distance from the hole-plate holding the stylus in the dominant hand as holding a pencil.
- 2. Reset the counter and stopwatch to zero.
- 3. Flip the toggle switch to the start position.
- 4. Start the stopwatch at the same time.
- 5. The subject will insert rapidly the stylus in each of the specified 9 holes starting with the largest without touching the edges. -Each time the stylus touches an edge, it will be registered as an error or contact on the impulse counter. In addition, you can record the total amount of time for the task.
- 6. When the subject withdraws the stylus from the last hole, stop the stopwatch.
- 7. Record the time in seconds required in completing the task, and the number of contacts recorded on the impulse counter.

B. For Steadiness experiment

- 1. The person stands at a comfortable distance from the hole-plate holding the stylus in the dominant hand.
- 2. Reset the counter and stopwatch to zero.
- 3. The instructor should hold the stopwatch in one hand and ready his other hand to flip the toggle switch to the start position. The instructor should flip the toggle switch on and start the stopwatch at the same time.
- 4. The subject will hold the stylus in each of the specified 9 holes without touching the edges for 15 seconds. Each time the stylus touches an edge, it will be registered on the counter as an error or contact. Note: reset stopwatch to zero for each hole but do not reset the counter until the person finishes the 9 holes.
- 5. Record the number of contacts made as registered on the counter.

Collected data :

A1)					
	Nama	Trial	Time	Number	Errors
	Name	IIIdi	Time	of errors	time
		1	20	11	1.429
		2	11.8	12	1.271
	Khaled	3	10.5	9	0.923
	Khaica	Mean	14.100	10.667	1.208
		Std. dev.	5.151	1.528	0.259
		1	14.1	19	1.534
		2	8.5	16	1.949
	Abdalaziz	3	9.1	7	0.905
	Abualaziz	Mean	10.567	14.000	1.463
		Std. dev.	3.075	6.245	0.526
		1	11	18	2.472
		2	8.1	13	1.951
	Bassam	3	3 6.7		2.073
	Dassann	Mean	8.600	16.333	2.165
Malos		Std. dev.	2.193	2.887	0.272
IVIAIES		1	8.3	14	1.954
		2	12.8	11	1.081
	Amro	3	9.9	8	0.628
	7.1110	Mean	10.333	11.000	1.221
		Std. dev.	2.281	3.000	0.674
		1	8.3	14	1.954
		2	9	17	3.045
	Abdallah	3	8.1	6	1.323
	/ ioduliuli	Mean	8.467	12.333	2.107
		Std. dev.	0.473	5.686	0.871
		1	11	10	0.871
		2	8	10	1.521
	Yahva	3	9.3	7	1.114
	i anya	Mean	9.433	9.000	1.169
		Std. dev.	1.504	1.732	0.328

-					
		1	19.28	24	2.5
	L	2	14.02	10	1.915
		3	12.07	16	1.827
	Jumana	Mean	15.123	16.667	2.081
		Std. dev.	3.729	7.024	0.366
		1	20.9	19	1.514
		2	18.25	9	1.238
	Manuam	3	12.24	13	1.01
	ivial yalli	Mean	17.130	13.667	1.254
		Std. dev.	4.437	5.033	0.252
		1	11.84	19	2.4
		2	10.79	11	1.029
	Rama	3	7.89	8	1.238
	Nama	Mean	10.173	12.667	1.556
Fomoloc		Std. dev.	2.046	5.686	0.739
remaies		1	13.04	21	2.175
		2	14.04	10	0.87
		3	13.03	16	2.107
	Layan	Mean	13.370	15.667	1.717
		Std. dev.	0.580	5.508	0.735
		1	20.11	13	1.792
		2	11.09	14	2.162
	Sara	3	8.31	7	0.959
	5414	Mean	13.170	11.333	1.638
		Std. dev.	6.169	3.786	0.616
		1	14.82	18	3.776
		2	12	6	1.097
	Dina	3	10.58	12	1.097
	Dina	Mean	12.467	12.000	1.990
		Std. dev.	2.158	6.000	1.547

		Time	Number of errors	Errors time
Malac	Mean	10.250	12.222	1.555
iviales	Std. Dev	3.082	4.138	0.627
Females	Mean	13.572	13.667	1.706
	Std. Dev	3.802	5.099	0.746
All	Mean	11.911	12.944	1.631
	Std. Dev	3.804	4.635	0.684

1	A2)							
	Name	Trial	Time	Distance		1	20	
		1	0.81	15.5		2	19	
		2	0.58	19		3	19.5	
		3	0.74	20	IVIar	Mean	19.500	I
	Khaled	Mean Std	0.710	18.167		Std. dev	0.500	
		dev.	0.118	2.363		1	21.6	Ì
		1	1.01	12		2	17.1	l
		2	1.69	17		3	22	l
		3	1.58	17.2	Jum	iana Mean	20.233	T
	Abdalaziz	Mean	1.427	15.400		Std.	2 724	ľ
		Std. dev.	0.365	2.946		dev.	2.721	
		1	0.77	16		2	15.5	T
		2	0.98	15.5		2	17.5	T
		3	0.97	13.5	Di	na Moan	17.067	T
Bassam Males	Mean	0.907	15.000		Std.	2.730		
		dev.	0.118	1.323	Females	dev. 1	12.3	T
		1	4.47	22		2	18.3	Î
		2	6.69	18.5		- 3	18.5	ľ
	Amro	3	8.45	21	Ra	ma Mean	16 367	T
	AIIIIO	Mean	6.537	20.500		Std	10.507	ľ
		Std. dev.	1.994	1.803		dev.	3.523	
		1	3.35	19		1	23	+
		2	2.78	19		2	20	ł
		3	1.7	15	Lav	/an 3	20.5	Ļ
	Youset	Mean	2.610	17.667		Mean	21.167	Ļ
		Std.	0.838	2.309		Std. dev.	1.607	
	1	0.83	16		1	17	L	
		2	0.57	16		2	19.5	
		2	0.67	15 5	C-		20	
	Yahya	Mean	0.673	15 833	30	Mean	18.833	I
	Std.	0.138	0.289		Std. dev.	1.607		

		Time	Distance	
Malos	Mean	2.144	17.094	
IVIAIES	Std. Dev	2.263	2.602	
Females	Mean	19.011	5.839	
	Std. Dev	2.530	1.802	
All	Mean	10.578	11.467	
	Std. Dev	8.874	6.119	

	Name	Trial	Number of	Errors				1	19
	Name	mai	errors	time				2	9
	1	48	6.230			Deserts	3	8	
		2	63	7.338		Pascale	Pascale	N.4.5.5.5	12.000
	Abdalaziz	3	54	6.136				iviean	12.000
	ADUdidziz	Mean	55.000	6.568				Std. dev	6.083
		Std. dev.	7.550	0.668				1	37
		1	26	2.576			2	25	
Males Amro	2	52	13.334		Females	Marah	3	41	
	3	41	9.528				Mean	34.333	
iviales	/	Mean	39.667	8.479			Std		
	Std.	13.051	5.455				dev.	8.327	
		dev.	45	24.670				1	76
Abdallah	1	45	24.679			2	28		
	2	17	32.887				2	20	
	3	21	30.145			Leen	3	6	
	Mean	27.667	29.237				Mean	36.667	
		Std. dev.	15.144	4.179				Std. dev.	35.796

B) *(Females' data are take from another group, because there was not data in ours)

2.643

1.377

1.028

1.683

0.850

2.825

1.759

3.833

2.806

1.037

12.967

2.388

0.749

5.368

6.632

		Time	Distance
Malos	Mean	40.778	14.761
Males	Std. Dev	15.967	11.422
Fomalos	Mean	27.667	3.285
Females	Std. Dev	22.551	3.692
All	Mean	34.222	9.023
	Std. Dev	19.854	10.144

Conclusions:

A. For Aiming experiment

- For the hole aiming, the fastest subject was Abdallah and the most accurate was Yahya, this indicates that aiming for males is better than it for females, because males are used to have more control while moving objects (dynamic).
- For the slot aiming, the best scores were for Khaled; with a little time and relatively long distance, again this indicates that aiming for males is better than it for females, because males are used to have more control while moving objects.
- If we decrease the hole diameter, the number of errors increases.
- This is an aiming process that contains continuous movement of the hand, so it does need visual acuity to perform the eye-hand coordination.

B. For Steadiness experiment

- All subjects used the same time interval to perform the experiment (15 seconds * 7 holes), but number of errors and errors time was less for females, because they are used to have more control in steadiness (static).
- As mentioned in the Procedure of the experiment; the difference is that aiming is performed by movement of the hand between holes, and measuring the time and number of errors, while steadiness is performed by fixing hand position for specific period of time.
- If the hole diameter is decreased, the number of errors increases.
- This process needs holding the hand in a specific position, there is no movement, i.e. there is no need for eye-hand coordination. So the need for visual acuity is minimum.