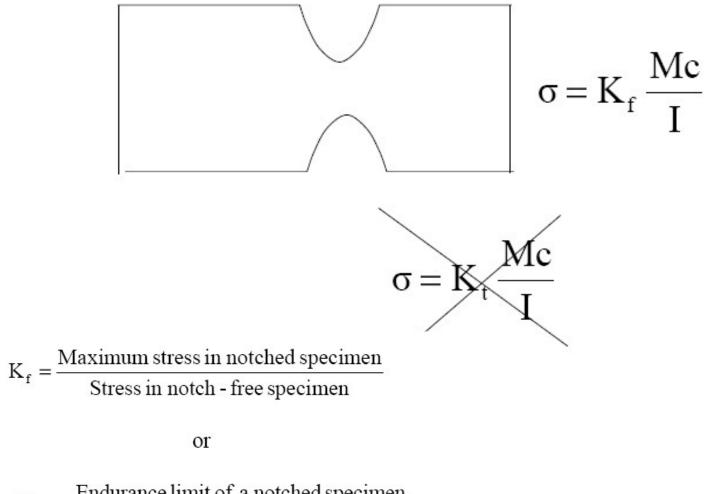
6-10 Stress Concentration and Notch Fatigue Stress Concentration Factors



 $K_{f} = \frac{\text{Endurance limit of a notched specimen.}}{\text{Endurance limit of a notch - free specimen.}}$

- $\sigma = k_f \sigma_{nom+} = k_f \sigma_o$
- $\tau = k_{fs}\tau_{nom} = k_{fs}\tau_{o}$
- k_f is a reduced value of k_T and σ_o is the nominal stress.
- k_f called fatigue stress concentration factor

- $k_f = [1 + q(k_t 1)]$
- $k_{fs} = [1 + q_{shear}(k_{ts} 1)]$
 - $k_{t} \, \text{or} \, k_{ts}$ and nominal stresses
 - Table A-15 & 16 (pages 1006-1013 in Appendix)
 - q and q_{shear}
 - Notch sensitivity factor
 - Find using figures 6-20 and 6-21 in book (Shigley) for steels and aluminums
 - Use q = 0.20 for cast iron
 - Brittle materials have low sensitivity to notches
 - As k_f approaches k_t, q increasing (sensitivity to notches, SC's)
 - If $k_f \sim 1$, insensitive (q = 0)
 - Property of the material

Notch Sensitivity Factor

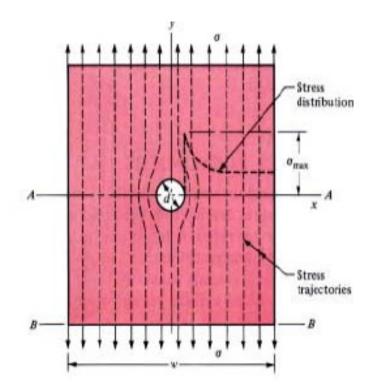
The notch sensitivity of a material is a measure of how sensitive a material is to notches or geometric discontinuities

$$q = \frac{K_f - 1}{K_t - 1} \qquad \qquad 0 \le q \le 1$$

 $K_{f} = 1 + q(K_{t} - 1)$ $1 \le K_{f} \le K_{t}$

Calculate Fatigue Stress Concentration Factor K_f using
 K_t and q:

Geometric Stress Concentration Factors



Kt is used to relate the maximum stress at the discontinuity to the nominal stress.

Kt is used for normal stresses

Kt is based on the geometry of the discontinuity

 σ_{nom} is usually computed using the minimum cross section

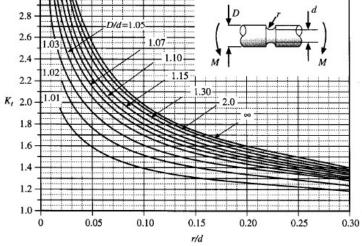
$$K_{t} = \frac{\sigma_{max}}{\sigma_{nom}}$$

$$\sigma_{nom} = \frac{F}{A_{0}}$$

$$A_{0} = (w - d)t$$

$$A_{0} = (w - d)t$$

σ



$$K_f = 1 + q(K_t - 1) \qquad \underline{or} \qquad K_{fs} = 1 + q_{shear}(K_{ts} - 1)$$

For Steels and Aluminum (2024) the notch sensitivity for <u>Bending and Axial</u> loading can be found from <u>Figure 6-20</u> and for <u>Torsion</u> is found from <u>Figure 6-21</u>.

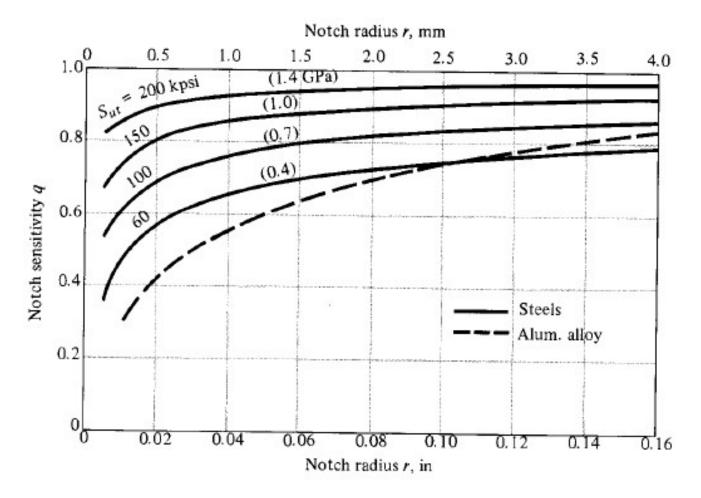


Fig 6-20 Reversed bending or reversed axial loading

- For <u>cast iron</u>, the notch sensitivity is <u>very low</u> from 0 to 0.2, but to be <u>conservative</u> it is recommended to use q = 0.2
- Heywood distinguished between <u>different types of notches</u> (hole, shoulder, groove) and according to him, K_f is found as:

The modified Neuber equation

$$K_f = \frac{K_t}{1 + \frac{2(K_t - 1)}{K_t} \frac{\sqrt{a}}{\sqrt{r}}}$$

Where, r: radius

 \sqrt{a} : is a constant that depends on the type of the notch.

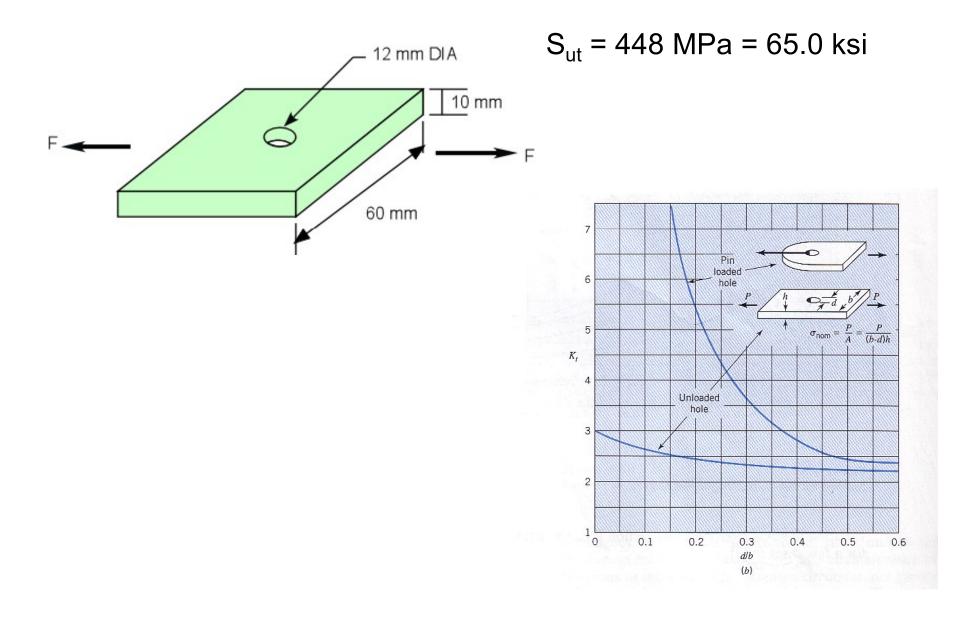
• For steels, \sqrt{a} for <u>different types of notches</u> is given in <u>Table 6-15</u>.

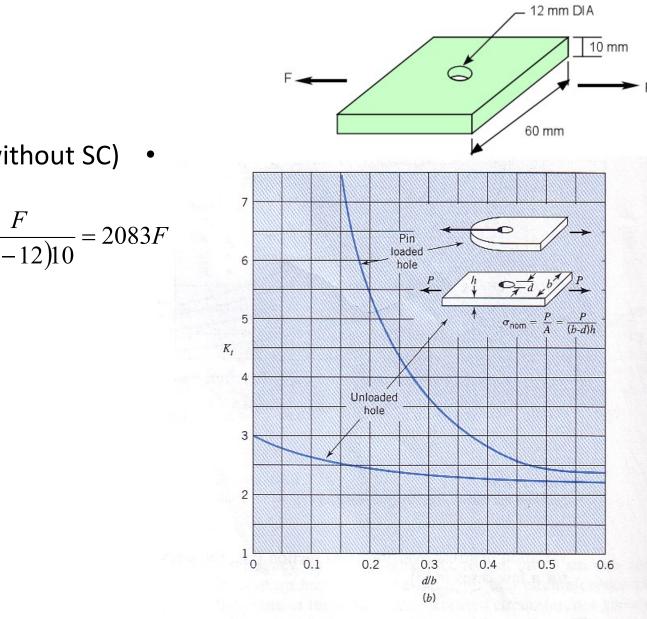
Bending or axial:
$$\sqrt{a} = 0.246 - 3.08(10^{-3})S_{ut} + 1.51(10^{-5})S_{ut}^2 - 2.67(10^{-8})S_{ut}^3$$

(6-35a)
Torsion: $\sqrt{a} = 0.190 - 2.51(10^{-3})S_{ut} + 1.35(10^{-5})S_{ut}^2 - 2.67(10^{-8})S_{ut}^3$ (6-35b)

Ex:AISI 1020 as-rolled steel

Ex: Find an expression for max. stress





Find σ'_{nom} (without SC) •

$$\sigma'_{nom} = \frac{P}{A} = \frac{P}{(b-d)h} = \frac{F}{(60-12)10} = 2083F$$

• Now add SC factor:

$$\sigma = k_f \sigma_{nom} = [1 + q(k_t - 1)]\sigma_{nom}$$
- r = 6 mm
- q ~ 0.8
Note radius r, mm

- Unloaded hole
- d/b = 12/60 = 0.2
- $k_t \sim 2.5$
- q = 0.8
- $k_t = 2.5$
- σ_{nom} = 2083 F

$$\sigma = [1 + q(k_t - 1)]\sigma_{nom}$$

$$\sigma = [1 + 0.8(2.5 - 1)]2083(F)$$

$$\sigma = 4583(F)$$

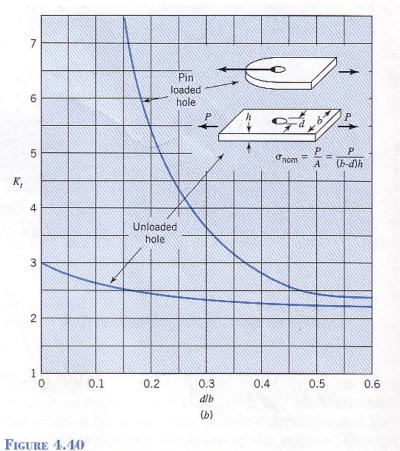


Plate with central hole (a) bending [7]; (b) axial hole [10].

6-10 Estimate the endurance strength of a 1.5-in-diameter rod of AISI 1040 steel having a machined finish and heat-treated to a tensile strength of 110 kpsi.

$$S_{ut} = 110 \text{ kpsi}$$
 $S'_{a} = 0.5(110) = 55 \text{ kpsi}$
 $k_{a} = aS_{ut}^{\ b}$ $a = 2.70, b = -0.265$
 $= 2.70(110)^{-0.265} = 0.777$

assume the worst case rotating bending or torsion

$$k_b = 0.879d^{-0.107} = 0.879(1.5)^{-0.107} = 0.842$$

 $S_e = k_a k_b S'_e = 0.777(0.842)(55) = 36.0 \text{ kpsi}$

6-14 A rectangular bar is cut from an AISI 1020 cold-drawn steel flat. The bar is 2.5 in wide by $\frac{3}{8}$ in thick and has a 0.5-in-dia. hole drilled through the center as depicted in Table A-15-1. The bar is concentrically loaded in push-pull fatigue by axial forces F_a , uniformly distributed across the width. Using a design factor of $n_d = 2$, estimate the largest force F_a that can be applied ignoring column action.

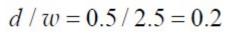
$$S_{ut} = 68 \text{ kpsi}$$

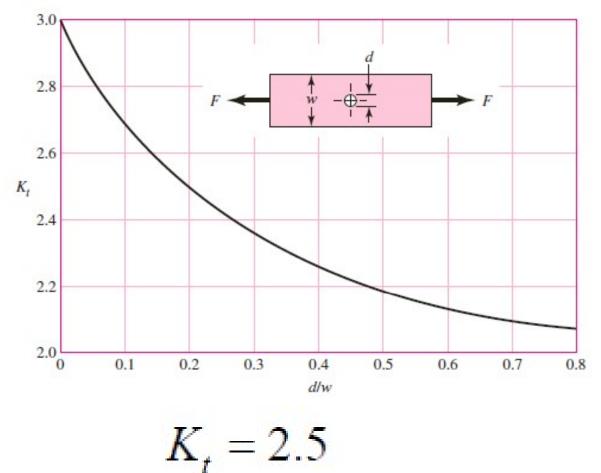
 $S'_e = 0.5(68) = 34$
 $k_a = 2.70(68)^{-0.265} = 0.88$
 $S_e = 0.88(1)(0.85)(34) = 25.4$

$$d / w = 0.5 / 2.5 = 0.2, K_t = 2.5$$

Figure A-15-1

Bar in tension or simple compression with a transverse hole. $\sigma_0 = F/A$, where A = (w - d)t and t is the thickness.





$$K_f = 1 + q(K_t - 1) \qquad \qquad q = \frac{1}{1 + \frac{\sqrt{a}}{\sqrt{r}}}$$

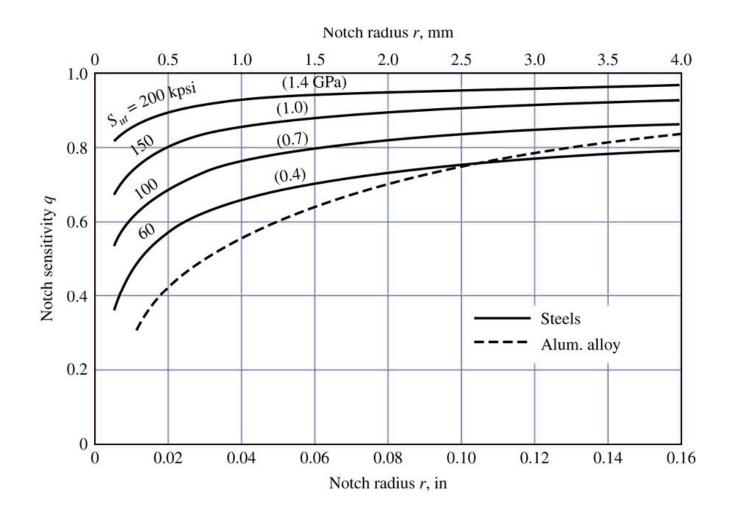
Bending or axial: $\sqrt{a} = 0.246 - 3.08(10^{-3})S_{ut} + 1.51(10^{-5})S_{ut}^2 - 2.67(10^{-8})S_{ut}^3$ (6-35a)

Torsion: $\sqrt{a} = 0.190 - 2.51(10^{-3})S_{ut} + 1.35(10^{-5})S_{ut}^2 - 2.67(10^{-8})S_{ut}^3$ (6-35b)

$$\sqrt{a} = 0.246 - 3.08(10^{-3})(68) + 1.51(10^{-5})(68)^2 - 2.67(10^{-8})(68^3)$$

= 0.09799

$$q = \frac{1}{1 + \frac{0.09799}{\sqrt{0.25}}} = 0.836$$



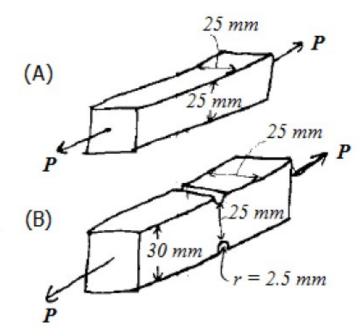
$$K_f = 1 + 0.836(2.5 - 1) = 2.25$$

$$\sigma_a = K_f \frac{F_a}{A} = \frac{2.25F_a}{(3/8)(2.5 - 0.5)} = 3F_a$$

$$n_f = \frac{S_e}{\sigma_a} = \frac{25.4}{3F_a} = 2$$
$$F_a = 4.23 \text{ kips}$$

Example: The two axially loaded bars shown are made of 1050 HR steel and have machined surfaces. The two bars are subjected to a <u>completely reversed</u> load P.

- a) Estimate the maximum value of the load P for each of the two bars such that they will have infinite life (*ignore buckling*).
- b) Find the static and fatigue factors of safety $n_s \& n_f$ for bar (**B**) if it is to be subjected to a completely reversed load of $P = 50 \ kN$.
- c) Estimate the fatigue life of bar (**B**) under reversed load of $P = 150 \ kN$ (use f = 0.9)



From <u>Table</u> $S_{ut} = 620 MPa$ & $S_y = 340 MPa$ a) $S_e' = 0.5(S_{ut}) = 310 MPa$ <u>Modifying factors</u>: - Surface factor: $k_a = a S_{ut}{}^b$, from <u>Table 6-2</u>: a = 4.51, b = -0.265 \Rightarrow $k_a = 4.51(620)^{-0.265} = 0.821$ - Size factor: $k_b = 1$ since the loading is axial - Loading factor: $k_c = 0.85$ (for axial loading) - Other factors: $k_a = k_e = k_f = 1$

<u>Stress concentration</u> (for bar **B**):

From <u>Figure A-15-3</u> with w/d = 1.2 & r/d = 0.1 \Rightarrow $K_t \approx 2.13$ Using Neuber equation: $K_f = \frac{K_t - 1}{1 + \frac{\sqrt{a}}{\sqrt{r}}} + 1$ From <u>Table 6-15</u> for a groove: $\sqrt{a} = 104/S_{ut} \Rightarrow \sqrt{a} = 104/620$ Using the modified *Neuber* equation: $K_f = \frac{K_t}{1 + \frac{2(K_t - 1)}{K_t} \sqrt{a}}$ From <u>Table 6-15</u> for a groove: $\sqrt{a} = 104/S_{ut} \Rightarrow \sqrt{a} = 104/620$ $\Rightarrow K_f = \frac{2.13}{1 + \frac{2(2.13 - 1)}{2.13} \frac{(104/620)}{\sqrt{2.5}}} = 1.91$ $\Rightarrow K_f = 2$

Thus,

For bar (A):
$$S_e = k_a k_c S'_e = (0.821)(0.85)(310) = 216.3 MPa$$
For bar (B): $(S_e)_{mod} = \frac{S_e}{K_f} = \frac{216.3}{2} = 108.15 MPa$

For bar (A):
$$S_e = k_a k_c S'_e = (0.821)(0.85)(310) = 216.3 MPa$$

For bar (B): $(S_e)_{mod} = \frac{S_e}{K_f} = \frac{216.3}{1.91} = 113.3 MPa$

b) Static factor of safety n_s :

$$\sigma_o = \frac{P}{A_{net}} = \frac{50 \times 10^3}{25 \times 25} = 80 MPa$$

$$\Rightarrow n_s = \frac{S_y}{\sigma_o} = \frac{340}{80} = \boxed{4.25}$$

Fatigue factor of safety n_f :

$$n_{f} = \frac{(S_{e})_{mod}}{\sigma_{o}} \quad or \quad n_{f} = \frac{S_{e}}{(K_{f}\sigma_{o})} = \frac{216.3}{(2)(80)} = \boxed{1.32}$$
$$n_{f} = \frac{S_{e}}{(K_{f}\sigma_{o})} = \frac{216.3}{(1.91)(80)} = \boxed{1.42}$$

c) If we calculate the fatigue factor of safety with P = 150 kN we will find it to be less than one and thus the bar will not have infinite life.

$$a = \frac{(fS_{ut})^2}{S_e} = \frac{(0.9 \times 620)^2}{216.3} = 1439.5 MPa$$

$$b = -\frac{1}{3} \log \left(\frac{fS_{ut}}{S_e}\right) = -\frac{1}{3} \log \left(\frac{0.9 \times 620}{216.3}\right) = -0.137$$

$$\sigma_o = \frac{P}{A_{net}} = \frac{150 \times 10^3}{25 \times 25} = 240 MPa$$

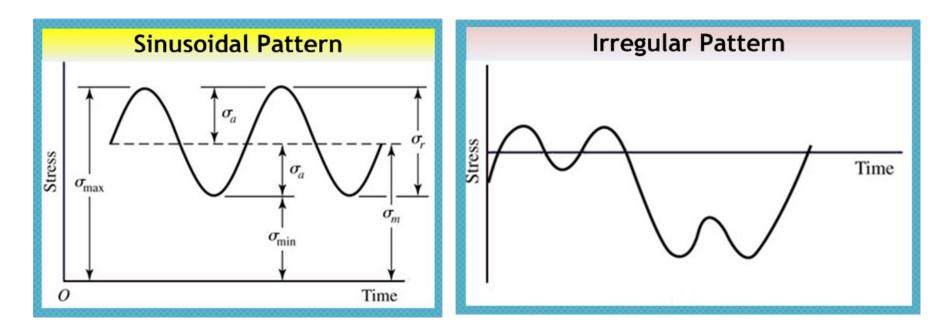
$$\sigma = K_f \sigma_o = 1.91 \times 240 = 458.4 MPa$$

$$\blacktriangleright N = \left(\frac{\sigma}{a}\right)^{1/b} = \left(\frac{458.4}{1439.5}\right)^{1/-0.137} = \boxed{4.24 \times 10^3 \text{ cycles}}$$

• The same result can be obtained if we divide both (S_e) and (fS_{ut}) by K_f ,

6–11**Characterizing Fluctuating Stresses**

- Fluctuating stresses in machinery often take the form of sinusoidal pattern because of the nature of some rotating machinery.
- **Other patterns some quite irregular do occur.**



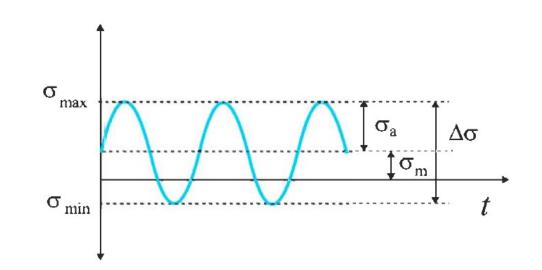
Fluctuating stresses

• Mean Stress

 $\sigma_m = \frac{\sigma_{\max} + \sigma_{\min}}{2}$ Stress amplitude m

$$\sigma_a = \frac{\sigma_{\max} - \sigma_{\min}}{2}$$

• Together, $\sigma_{\rm m}$ and $\sigma_{\rm a}$ characterize fluctuating stress



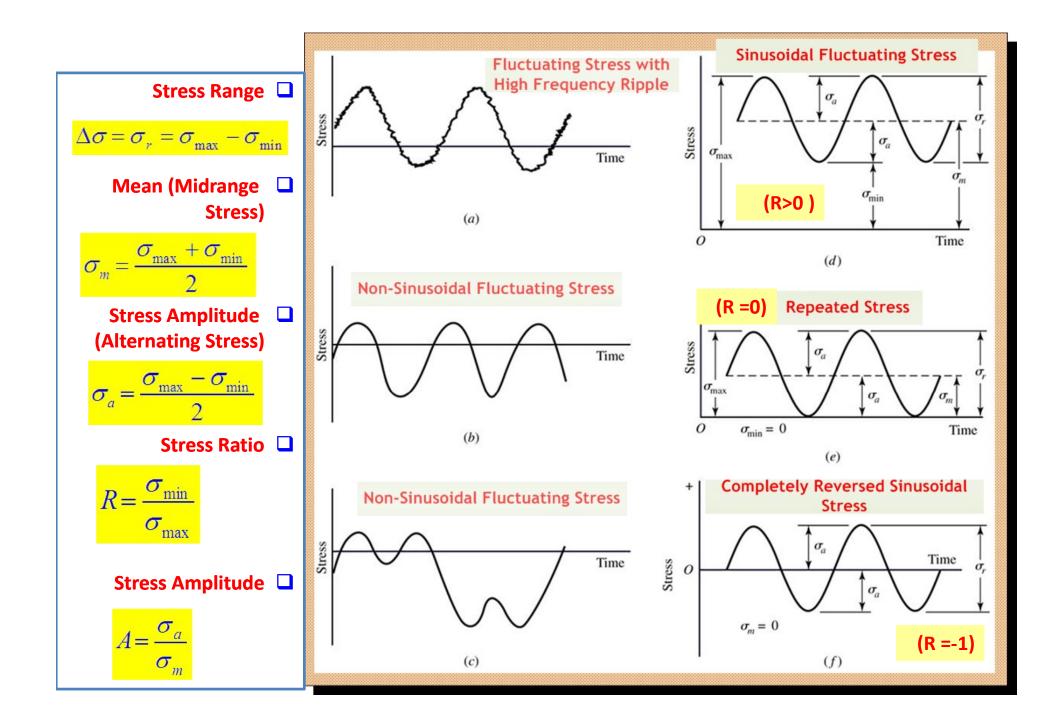
the important parameters to characterize a given cyclic loading]

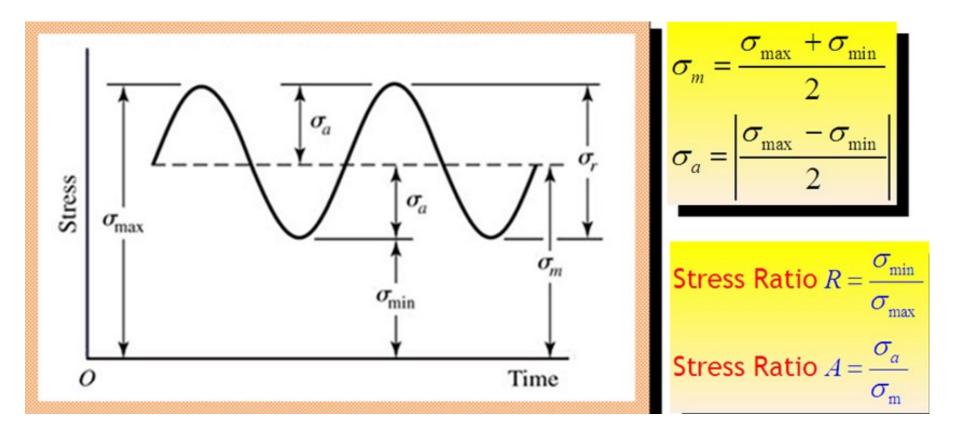
• Stress Range:
$$\Delta \sigma = \sigma_{\max} - \sigma_{\min}$$

• Stress amplitude: $\sigma_a = \frac{1}{2}(\sigma_{\max} - \sigma_{\min})$

• Mean stress:
$$\sigma_m = \frac{1}{2}(\sigma_{\max} + \sigma_{\min})$$

• Load ratio:
$$R = \frac{\sigma_{\min}}{\sigma_{\max}}$$





- σ_{\max} :maximum stress
- $\sigma_{_{
 m min}}$: minimum stress
- σ_a : amplitude (alternating) component
- σ_m :midrange (mean) component
- σ_r :range of stress
- σ_s : static or steady stress

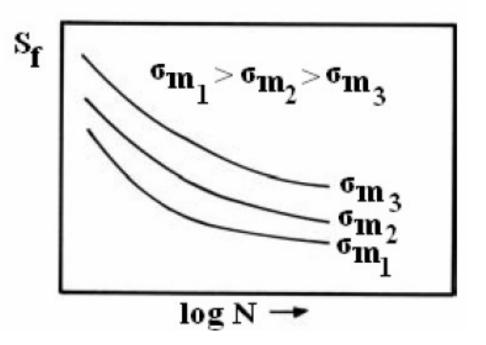
Effect of σ_m on 'S - N' curves

if σ_m not zero

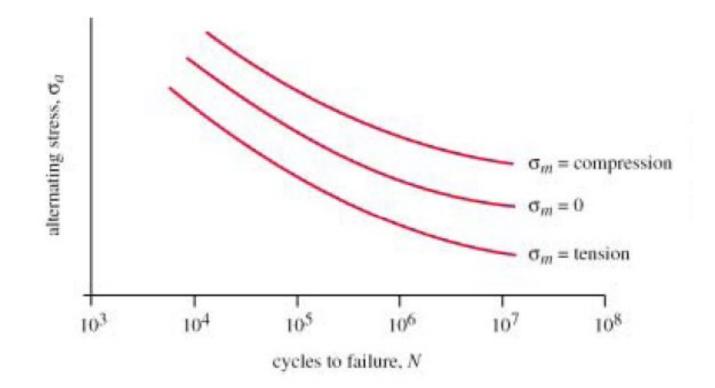
- $N_{\rm f}$ decreases as $\sigma_{\rm m}$ increases to maintain given $N_{\rm f}$

- must decrease stress range, $\Delta\sigma$

For a given stress amplitude σ_a , as the mean stress increases, the fatigue life decreases



S-N diagrams for different σ_m



There are several basic methods to obtain one diagram from these curves, which enable to define intensity of ultimate stress amplitude for given midrange stress