Due to their contact angle (5...28°), tapered roller bearings can accommodate both radial and axial loads

Selection of Tapered Roller Bearings

The four components of a tapered roller bearing assembly are the

- Cone (inner ring)
- Cup (outer ring)
- Tapered rollers
- Cage (spacer-retainer

Four Components:

- ◆Cone (inner ring)
- ◆Cup (outer ring)sliding surface

- ◆Tapered rollers
- ◆Cage (spacer, retainer)

♦ The radial loads act perpendicular to the shaft axis through points A_0 and B_0 .

♦ The geometric spread a_g for the direct mounting (cone backs facing each other) is — greater than for indirect mounting (cone fronts facing each other), however, the system stability is the same a_g (a_g is the same in both cases).

Direct-mounted tapered roller

First, determine visually which bearing is being "squeezed" by the external thrust load, and label it as bearing \mathcal{A}

A radial load will induce a thrust reaction.

The load zone includes about half the rollers and subtends an angle of approximately 180°.

Using the symbol F_i for the induced thrust load from a radial load with a 180° load zone, Timken provides

$$F_{\rm i} = \frac{0.47F_r}{K} \tag{11-15}$$

where K is a geometric factor

$$K = 0.389 \cot \alpha$$

where α is half the included cup angle.

The *K factor can be first approximated with 1.5 for a radial* bearing and 0.75 for a steep angle bearing

Second,

 If the effective radial load is less than the actual radial load, use the actual load

$$If F_{iA} \leq \left(F_{iB} + F_{ae}\right) \begin{cases} F_{eA} = 0.4F_{rA} + K_A \left(\frac{0.47F_{rB}}{K_B} + F_{ae}\right) \\ F_{eB} = F_{rB} \end{cases}$$

$$if F_{iA} \ge (F_{iB} + F_{ae}) \begin{cases} F_{eB} = 0.4F_{rB} + K_B \left(\frac{0.47F_{rA}}{K_A} - F_{ae} \right) \\ F_{eA} = F_{rA} \end{cases}$$

$$C_{10} \cong F_D \left(\frac{x_D}{x_0 + (\theta - x_0)(1 - R_D)^{1/b}} \right)^{1/a}$$
 or

$$x_D = x_0 + (\theta - x_0) (1 - R_D)^{1/b} \left(\frac{C_{10}}{F_D}\right)^a$$

Timken uses a two-parameter Weibull model with $x_0 = 0$, $\theta = 4.48$, and b = 3/2. For a Timken tapered roller bearing with a = 10/3, and $L_{10} = 90 \cdot 10^6$ revolutions

$$x_D = L_D/90 \cdot 10^6 = 4.48 \left(1 - R_D\right)^{2/3} \left(\frac{C_{10}}{F_D}\right)^{10/3}$$

$$L_D = 4.48 \left(1 - R_D \right)^{2/3} \left(\frac{C_{10}}{F_D} \right)^{10/3} 90 \cdot 10^6$$

- The catalog rating C_{10} corresponding to 90% reliability.
- The subscript 10 denoting 10% failure level.
- Timken denoted its catalog rating as C_{90} , the subscript 90 standing for at 90 million revolutions.
- The failure fraction is still 10% (90% reliability)

where F_D is the dynamic equivalent load of the combination F_r and F_a . The particular values of X and Y are According to Timken

X=0.4, V=1 for all cases and Y=K

$$F_{eA} = 0.4F_{rA} + K_A F_{aA}$$
$$F_{eB} = 0.4F_{rB} + K_B F_{aB}$$

Bearing A induces thrust on B and vice versa

The shaft depicted in Fig. 11-18a carries a helical gear with a tangential force of 3980 N, a separating force of 1770 N, and a thrust force of 1690 N at the pitch cylinder with directions shown.

The pitch diameter of the gear is 200 mm.

The shaft runs at a speed of 800 rpm, and the span (effective spread) between the *direct-mount* bearings is 150 mm.

The design life is to be 5000 h and an application factor of 1 is appropriate.

The lubricant will be ISO VG 68 (68 cSt at 40 °C) oil with an estimated operating temperature of 55 °C.

If the reliability of the bearing set is to be 0.99, select suitable single-row tapered-roller Timken bearings.

(b)

169 000 N · mm

(c)

$$R_A^Z = \frac{3980(50)}{150} = 1327 \text{ N}$$
 $R_B^Z = \frac{3980(100)}{150} = 2653 \text{ N}$

The reactions in the xy plane are

$$R_{A}^{y} = \frac{1770(50)}{150} + \frac{1690(100)}{150} = 1717 \text{ N}$$

$$R_{B}^{y} = \frac{1770(100)}{150} - \frac{1690(100)}{150} = 53.3 \text{ N}$$

$$F_{rA} = \left(R_{zA}^{2} + R_{yA}^{2}\right)^{1/2} = \left(1327^{2} + 1717^{2}\right)^{1/2} = 2170 \text{ N}$$

$$F_{rB} = \left(R_{zA}^{2} + R_{yA}^{2}\right)^{1/2} = \left(2653^{2} + 53.3^{2}\right)^{1/2} = 2654 \text{ N}$$

Trial 1: For the left bearing, we will use $K_A = K_B = 1.5$ to start. for direct mounting and F_{ae} to the right is positive

$$\frac{0.47F_{rA}}{K_A} < ? > \frac{0.47F_{rB}}{K_B} + F_{ae}$$

$$\frac{0.47(2170)}{1.5} < ? > \frac{0.47(2654)}{1.5} + (1690)$$

$$680 < 2522$$

Therefore, we use the upperset of equations to find the thrust loads:

The dynamic equivalent F_{eA} and F_{eB} are

$$F_{eA} = 0.4F_{rA} + K_A F_{aA} = 0.4(2170) + 1.5(2522) = 4651 \text{ N}$$

 $F_{eB} = F_{rB} = 2654 \text{ N}$

$$||F_{eA}|| = 0.4F_{rA} + K_{A} \left(\frac{0.47F_{rB}}{K_{B}} + F_{ae} \right)$$

$$||F_{eB}|| = F_{rB}$$

$$if F_{iA} \ge (F_{iB} + F_{ae}) \begin{cases} F_{eB} = 0.4F_{rB} + K_B \left(\frac{0.47F_{rA}}{K_A} - F_{ae}\right) \\ F_{eA} = F_{rA} \end{cases}$$

Estimate R_D as $\sqrt{0.99} = 0.995$ for each bearing. For bearing A, the catalog entry C_{10} should equal or exceed

$$C_{10} = (1)(4651) \left[\frac{5000(800)60}{4.48 \cdot (1 - 0.995)^{2/3} (90 \cdot 10^6)} \right]^{3/10} = 11486 \,\mathrm{N}$$

select 15100 cone and 15245 cup, which will work:

$$K_A = 1.67$$
, $C_{10} = 12100 \text{ N}$

For bearing B, the catalog entry C_{10} should equal or exceed

$$C_{10} = (1)(2654) \left[\frac{5000(800)60}{4.48 (1 - 0.995)^{2/3} (90 \cdot 10^6)} \right]^{3/10} = 6554 \text{ N}$$

Tentatively select the bearing identical to bearing A, which will work:

$$K_B = 1.67$$
, $C_{10} = 12100 \text{ N}$

SINGLE-ROW STRAIGHT BORE

bore d	outside diameter	width			10				cone				cup			
			rating at 500 rpm for 3000 hours L ₁₉		fac-	eff.	part numbers		max shaft	7.64	backing shoulder		max hous-	111	backing shoulder	
			one- row radial N lbf	thrust N lbf	K	load center a®	cone	cup	fillet radius R©	width B	diameters		fillet radius	width	diameters	
											d _b	da	r [©]	С	D _b	D _a
25.400 1.0000	60.325 2.3750	19.842 0.7812	11000 2480	6550 1470	1.69	-5.1 -0.20	15578	15523	1.3 0.05	17.462 0.6875	32.5 1.28	30.5 1.20	1,5 0.06	15.875 0.6250	51.0 2.01	54.0 2.13
25.400 1.0000	61.912 2.4375	19.050 0.7500	12100 2730	7280 1640	1.67	-5.8 -0.23	15101	15243	0.8	20.638 0.8125	32.5 1.28	31.5 1.24	2.0 0.08	14.288 0.5625	54.0 2.13	58.0 2.28
25.400 1.0000	62.000 2.4409	19.050 0.7500	12100 2730	7280 1640	1.67	-5.8 -0.23	15100	15245	3.5 0.14	20.638 0.8125	38.0 1.50	31.5 1.24	1.3 0.05	14.288 0.5625	55.0 2.17	58.0 2.28

Trial 2:

Use $K_A = K_B = 1.67$ from the tentative bearing selection.

$$\frac{0.47F_{rA}}{K_A} < ? > \frac{0.47F_{rB}}{K_B} + F_{ae}$$

$$\frac{0.47(2170)}{1.67} < ? > \frac{0.47(2654)}{1.67} + 1690$$

$$611 < 2437$$

The dynamic equivalent P_A and P_B are

$$F_{\text{eA}} = 0.4F_{rA} + K_A F_{aA} = 0.4(2170) + 1.67(2437) = 493 \text{ 8N}$$

 $F_{\text{eB}} = F_{rB} = 2654 \text{ N}$

For bearing A,

$$C_{10} = (1)(4938) \left[\frac{5000(800)60}{4.48 \cdot (1 - 0.995)^{2/3} (90 \cdot 10^6)} \right]^{3/10} = 12195 \,\mathrm{N}$$

Although this catalog entry exceeds slightly the tentative selection for bearing A we will keep it.

For bearing B, $P_B = F_{rB} = 2654 \text{ N}$.

$$C_{10} = (1)(2654) \left[\frac{5000(800)60}{4.48 \cdot (1 - 0.995)^{2/3} (90 \cdot 10^6)} \right]^{3/10} = 6554 \text{ N}$$

Select cone and cup 15100 and 15245, respectively, for both bearing A and B. the effective load center is located at a = -5.8 mm.

Thus the shoulder - to - shoulder dimension should be 150 - 2(5.8) = 138.4 mm.

