Due to their contact angle (5...28°), tapered roller bearings can accommodate both radial and axial loads

Selection of Tapered Roller Bearings

The four components of a tapered roller bearing assembly are the

- Cone (inner ring)
- Cup (outer ring)
- Tapered rollers
- Cage (spacer-retainer

Four Components: \bigcirc Cone (inner ring) \blacklozenge Cup (outer ring)sliding surface

◆Tapered rollers

Cage (spacer, retainer)

 \blacktriangleright The radial loads act perpendicular to the shaft axis through points A_0 and B_0 .

 \blacklozenge The geometric spread a_{ϱ} for the direct mounting (cone backs facing each other) is greater than for indirect mounting (cone fronts facing each other), however, the system stability is the same $(a_{\rho}$ is the same in both cases).

Direct-mounted tapered roller

First, determine visually which bearing is being "squeezed" by the external thrust load, and label it as bearing A

A radial load will induce a thrust reaction. The load zone includes about half the rollers and subtends an

angle of approximately 180^o.

Using the symbol F_i for the induced thrust load from a radial load with a 180° load zone, Timken provides

$$
F_{\mathbf{i}} = \frac{0.47F_r}{K}
$$
 (11-15)
where *K* is a geometric factor

$$
K = 0.389 \cot \alpha
$$

where α is half the included cup angle.

The *K factor can be first approximated with 1.5 for a radial* bearing and 0.75 for a steep angle bearing

Second,

Second,
• If the effective radial load is less than the actual radial
load, use the actual load load, use the actual load

$$
JfF_{iA} \leq (F_{iB} + F_{ae}) \begin{cases} F_{eA} = 0.4F_{rA} + K_A \left(\frac{0.47F_{rB}}{K_B} + F_{ae} \right) \\ F_{eB} = F_{rB} \end{cases}
$$

$$
i fF_{iA} \geq (F_{iB} + F_{ae}) \begin{cases} F_{eB} = 0.4F_{rB} + K_B \left(\frac{0.47F_{rA}}{K_A} - F_{ae} \right) \\ F_{eA} = F_{rA} \end{cases}
$$

$$
C_{10} \cong F_D \left(\frac{x_D}{x_0 + (\theta - x_0)(1 - R_D)^{1/b}} \right)^{1/a} \text{ or}
$$

$$
x_D = x_0 + (\theta - x_0)(1 - R_D)^{1/b} \left(\frac{C_{10}}{F_D} \right)^a
$$

Timken uses a two-parameter Weibull model with $x_0 = 0$, $\theta = 4.48$, and $b = 3/2$. For a Timken tapered roller bearing with $a = 10/3$, and $L_{10} = 90 \cdot 10^6$ revolutions

$$
x_D = L_D / 90 \cdot 10^6 = 4.48 \left(1 - R_D\right)^{2/3} \left(\frac{C_{10}}{F_D}\right)^{10/3}
$$

$$
L_D = 4.48 \left(1 - R_D\right)^{2/3} \left(\frac{C_{10}}{F_D}\right)^{10/3} 90 \cdot 10^6
$$

- The catalog rating C_{10} corresponding to 90% reliability.
- \cdot The subscript 10 denoting 10% failure level.
- Timken denoted its catalog rating as C_{90} , the subscript 90 standing for at 90 million revolutions.
- \cdot The failure fraction is still 10% (90% reliability)

where F_D is the dynamic equivalent load of the combination F_r and F_a The particular values of X and Y are According to Timken $X=0.4$, V=1 for all cases and Y=K

 $Fe=0.4Fr+KFa$

$$
\mathbf{F}_{e\mathbf{A}} = 0.4F_{rA} + K_A F_{\mathbf{a}_A}
$$

$$
\mathbf{F}_{e\mathbf{B}} = 0.4F_{rB} + K_B F_{\mathbf{a}_B}
$$

Bearing A induces thrust on B and vice versa

The shaft depicted in Fig. 11-18a carries a helical gear with a tangential force of 3980 N, a separating force of 1770 N, and a thrust force of 1690 N at the pitch cylinder with directions shown.

The pitch diameter of the gear is 200 mm.

The shaft runs at a speed of 800 rpm, and the span (effective spread) between the *direct-mount* bearings is 150 mm.

The design life is to be 5000 h and an application factor of 1 is appropriate.

The lubricant will be ISO VG 68 (68 cSt at 40° C) oil with an estimated operating temperature of 55 °C.

If the reliability of the bearing set is to be 0.99, select suitable single-row tapered-roller Timken bearings.

$$
R_A^Z = \frac{3980(50)}{150} = 1327 \text{ N}
$$

\n
$$
R_B^Z = \frac{3980(100)}{150} = 2653 \text{ N}
$$

\nThe reactions in the *xy* plane are
\n
$$
R_A^Y = \frac{1770(50)}{150} + \frac{1690(100)}{150} = 1717 \text{ N}
$$

\n
$$
R_B^Y = \frac{1770(100)}{150} - \frac{1690(100)}{150} = 53.3 \text{ N}
$$

\n
$$
F_{rd} = (R_{zd}^2 + R_{yd}^2)^{1/2} = (1327^2 + 1717^2)^{1/2} = 2170 \text{ N}
$$

\n
$$
F_{rB} = (R_{zd}^2 + R_{yd}^2)^{1/2} = (2653^2 + 53.3^2)^{1/2} = 2654 \text{ N}
$$

\nTrial 1: For the left bearing, we will use $K_A = K_B = 1.5$ to start.
\nfor direct mounting and F_{ae} to the right is positive

$$
\frac{0.47F_{rA}}{K_A} < ? > \frac{0.47F_{rB}}{K_B} + F_{ae}
$$
\n
$$
\frac{0.47(2170)}{1.5} < ? > \frac{0.47(2654)}{1.5} + (1690)
$$
\n
$$
680 < 2522
$$

Therefore, we use the upperset of equations to find the thrust loads:

The dynamic equivalent $F_{\alpha A}$ and $F_{\alpha B}$ are $F_{\text{e}A} = 0.4F_{\text{r}A} + K_A F_{\text{a}A} = 0.4(2170) + 1.5(2522) = 4651 \text{ N}$ $F_{\rm AB} = F_{\rm FB} = 2654$ N $\left\{ \begin{aligned} H & F_{id} \leq (F_{iB} + F_{ae}) \Bigg| F_{eA} = 0.4F_{id} + K_A \Bigg(\frac{0.47F_{iB}}{K_B} + F_{ae} \Bigg) \Bigg| F_{eB} = F_{iB} \end{aligned} \right\}$ $if F_{id} \ge (F_{iB} + F_{ae})$
 $F_{ed} = F_{rd}$

Estimate R_p as $\sqrt{0.99}$ = 0.995 for each bearing. For bearing A, the catalog entry C_{10} should equal or exceed

$$
C_{10} = (1)(4651) \left[\frac{5000(800)60}{4.48 \cdot (1 - 0.995)^{2/3} (90 \cdot 10^6)} \right]^{3/10} = 11486 \text{ N}
$$

select 15100 cone and 15245 cup, which will work: $K_{A} = 1.67, C_{10} = 12100 \text{ N}$ For bearing B, the catalog entry C_{10} should equal or exceed $C_{10} = (1)(2654) \left[\frac{5000(^800)60}{4.48~(1 - 0.995)^{2/3}(90.10^6)} \right]^{3/10} = 6554 \text{ N}$

Tentatively select the bearing identical to bearing A , which will work: $K_{\rm B} = 1.67$, $C_{\rm 10} = 12100$ N

SINGLE-ROW STRAIGHT BORE

Trial 2:
\nUse
$$
K_A = K_B = 1.67
$$
 from the tentative bearing selection.
\n
$$
\frac{0.47F_{rd}}{K_A} < 2 > \frac{0.47F_{rB}}{K_B} + F_{ae}
$$
\n
$$
\frac{0.47(2170)}{1.67} < 2 > \frac{0.47(2654)}{1.67} + 1690
$$
\n611 < 2437

The dynamic equivalent P_A and P_B are $F_{\text{eA}} = 0.4F_{rA} + K_A F_{aA} = 0.4(2170) + 1.67(2437) = 4938N$ $F_{\rm eB} = F_{rB} = 2654$ N

For bearing A ,

$$
C_{10} = (1)(4938) \left[\frac{5000(800)60}{4.48 \cdot (1 - 0.995)^{2/3} (90 \cdot 10^6)} \right]^{3/10} = 12195 \text{ N}
$$

Although this catalog entry exceeds slightly the tentative selection for bearing A we will keep it.

For bearing *B*,
$$
P_B = F_{rB} = 2654
$$
 N.
\n
$$
C_{10} = (1)(2654) \left[\frac{5000(800)60}{4.48 \cdot (1 - 0.995)^{2/3} (90 \cdot 10^6)} \right]^{3/10} = 6554
$$
 N

Select cone and cup 15100 and 15245, respectively, for both bearing A and B . the effective load center is located at $a = -5.8$ mm.

Thus the shoulder - to - shoulder dimension should be $150 - 2(5.8) = 138.4$ mm.

