3-14 Stresses in Pressurized Cylinders

Thin-walled and thick-walled pressure vessels

thin-walled cylinders $(r_i/t \ge 10)$ thick-walled cylinders $(r_i/t < 10)$

the circumferential or "hoop" stresses $\boldsymbol{\sigma}t$

Thick-Walled Cylinders

> thick-walled pressure vessel, $r_i/t < 10$

For thick-walled pressure vessels

$$\sigma_{r} = \frac{p_{i}r_{i}^{2} - p_{o}r_{o}^{2} + r_{i}^{2}r_{o}^{2}(p_{o} - p_{i})/r^{2}}{r_{o}^{2} - r_{i}^{2}}$$
$$\sigma_{t} = \frac{p_{i}r_{i}^{2} - p_{o}r_{o}^{2} - r_{i}^{2}r_{o}^{2}(p_{o} - p_{i})/r^{2}}{r_{o}^{2} - r_{i}^{2}}$$

- Maximum shear stress $\tau_{\text{max}} = \frac{1}{2}(\sigma_t - \sigma_r)$

If the ends of the cylinder are capped, must include longitudinal stress.

$$\sigma_{l} = \frac{p_{i}r_{i}^{2} - p_{o}r_{o}^{2}}{r_{o}^{2} - r_{i}^{2}}$$

5

Thin-Walled Pressure Vessels

$$\sigma_t = \frac{pr_i}{t}$$
 (hoop stress) $\sigma_l = \frac{pr_i}{2t}$ (longitudinal

In thin walled pressure vessels, the inner and outer radii are set equal to r, and the thickness is t.

- Radial stress (σ_r) is equal to -p on the inner surface, zero on the outer surface, and varies in between.
- σ_r is negligible compared to σ_r .

Ex: A cylindrical steel pressure vessel 400 mm in diameter with a wall thickness of 20 mm, is subjected to an internal pressure of 4.5 MN/m2.

- (a) Calculate the tangential and longitudinal stresses in the steel.
- (b) To what value may the internal pressure be increased if the stress in the steel is limited to 120 MN/m2?

ri/t =200/20=10 Thin walled vessel

Ot=2**O**I

So the tangential stress is the critical stress

$$\sigma_t = \frac{pr_i}{t}$$

$$120 = \frac{p*200}{20}$$

$$p = 12 \text{ MPa}$$

5-2 Stress Concentration Factor, K_t

$$K_{t} = \frac{\sigma_{\text{max}}}{\sigma_{\text{avg}}} \qquad K_{ts} = \frac{\tau_{\text{max}}}{\tau_{\text{avg}}}$$
$$\sigma_{\text{avg}} = \frac{P}{A}, \text{ where } A \text{ is the smallest cross - sectional area.}$$

 Elementary stress equations don't apply in stress concentrations.

Stress concentration factor *from charts*

Figure A-15-1

Bar in tension or simple compression with a transverse hole. $\sigma_0 = F/A$, where A = (w - d)t and t is the thickness.

Stress concentration factors for a variety of geometries are found in Tables A-15 and A-16

ExThe transition in the cross-sectional area of the steel bar is achieved using shoulder fillets. If the bar is subjected to a bending moment of 5 kNm, determine the maximum normal stress developed in the steel. The yield stress is $\sigma_y = 500$ MPa.

$$\frac{r}{d} = \frac{16}{80} = 0.2$$
 $\frac{D}{d} = \frac{120}{80} = 1.5$

From the geometry of the bar,

K is 1.45 and we have

This result indicates that the steel remains elastic since the stress is below the yield stress (500 MPa).

Exam question. The steel bar shown in the figure is made of AISI 1006 cold- drawn steel and is loaded by a bending moment M = 200 N.m, , and two axial loads of 1 kN and 200 N as shown in the figure.

a- For the critical stress element, determine the principal stresses and the maximum shear stress

b- Compute the factor of safety, based upon the distortion energy theory, for the critical stress element of the member

AISI 1006 cold- drawn

UTS= 330 MPa, Sy=280 MPa

Figure A-15-1

thickness.

3.0

Normal stress due to Fx:

$$\sigma_x = \frac{F_x}{A} = \frac{1000}{(25-6)10} = 5.263 MPa$$

d/w=6/25=0.24 , Kt=2.42

$$\sigma_{max} = K_t \sigma_x = 2.42 \frac{F_x}{A} = 2.42 * 5.263 = 12.736 MPa$$

Normal stress due to Fy

 $\sigma_y = \frac{F_y}{A} = \frac{200}{(40-6)10} = 0.59MPa$

$$\sigma_{max} = K_t \sigma_y = 2.58 \frac{F_y}{A} = 2.58 * 0.59 = 1.52 MPa$$

Rectangular bar with a transverse hole in bending. $\sigma_0 = Mc/I$, where $I = (w - d)h^3/12$.

$$\sigma_x = \frac{M_z \times \frac{d}{2}}{I} = \frac{200 \times 0.005}{(25 - 6)(10)^3} * 12 = 631.57 MPa$$

D/d=6/25=0.24 , d/h=6/10=0.6 Kt=2

$\sigma_{max} = K_t \sigma_x = 2 \times 631.57 = 1263.14 MPa$

$\sigma_{x total} = 12.736 + 1263.14 = 1275.88 MPa$

Principle stresses

 $\sigma_{1,2} = 1275.88, 1.52$ $\tau_{max} = \frac{1275.88 - 1.52}{2} = 637.18$ b- $Sy = \frac{1}{\sqrt{2}}\sqrt{(\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 + (\sigma_3 - \sigma_1)^2}$ $\sigma_{eff} = \frac{1}{\sqrt{2}} \sqrt{(1275.88 - 1.52)^2 + (1.52)^2 + (1275.88)^2} = 1275.12 MPa$ S_w 280 2

$$n = \frac{-y}{\sigma_{eff}} = \frac{200}{1275.12} = 0.2$$