3-14 Stresses in Pressurized Cylinders

Thin-walled and thick-walled pressure vessels

thin-walled cylinders $(r_i/t \ge 10)$ thick-walled cylinders $(r_i/t < 10)$

the circumferential or "hoop" stresses ot

Thick-Walled Cylinders \triangleright thick-walled pressure vessel, r_i/t < 10

– For thick-walled pressure vessels

$$
\sigma_r = \frac{p_i {r_i}^2 - p_o {r_o}^2 + {r_i}^2 {r_o}^2 (p_o - p_i) / r^2}{r_o^2 - r_i^2}
$$

$$
\sigma_t = \frac{p_i {r_i}^2 - p_o {r_o}^2 - {r_i}^2 {r_o}^2 (p_o - p_i) / r^2}{r_o^2 - r_i^2}
$$

– Maximum shear stress $\tau_{\text{max}} = \frac{1}{2} (\sigma_{t})$ 1 $(\sigma_{_t} - \sigma_{_r})$ 2 $\tau_{\text{max}} = \frac{1}{2}(\sigma_t - \sigma_r)$

– If the ends of the cylinder are capped, must include longitudinal stress.

$$
\sigma_{l} = \frac{p_{i}r_{i}^{2}-p_{o}r_{o}^{2}}{r_{o}^{2}-r_{i}^{2}}
$$

5

Thin-Walled Pressure Vessels

Then-Walled Pressure Vessels

\n
$$
\sigma_{t} = \frac{pr_{i}}{t}
$$
\n(hoop stress)

\n
$$
\sigma_{l} = \frac{pr_{i}}{2t}
$$
\n(longitudinal stress)

\n
$$
\sigma_{t} = \frac{pr_{i}}{2t}
$$

 \triangleright In thin walled pressure vessels, the inner and outer radii are set equal to r, and the thickness is $t. \searrow t$

- Radial stress (σ_r) is equal to -p on the inner surface, zero on the outer surface, and varies in between.
- σ_r is negligible compared to σ_r \overline{a}

 σ .

 r_{o}) |

 $r_i \rightarrow$

 t

 $p \leftarrow r$

 σ_t

Ex: A cylindrical steel pressure vessel 400 mm in diameter with a wall thickness of 20 mm, is subjected to an internal pressure of 4.5 MN/m2. Ex: A cylindrical steel pressure vessel 400 mm in diameter with a wall thickne
mm, is subjected to an internal pressure of 4.5 MN/m2.
(a) Calculate the tangential and longitudinal stresses in the steel.
(b) To what value m Ex: A cylindrical steel pressure vessel 400 mm in diameter with a wall thickness of 20 mm, is subjected to an internal pressure of 4.5 MN/m2.
(a) Calculate the tangential and longitudinal stresses in the steel.
(b) To what

-
- limited to 120 MN/m2?

ri/t =200/20=10 Thin walled vessel

 $\sigma t = 2\sigma l$

So the tangential stress is the critical stress

$$
\sigma_t = \frac{pr_i}{t}
$$

$$
120 = \frac{p * 200}{20}
$$

$$
p = 12 \text{ MPa}
$$

5-2 Stress Concentration Factor, K_t

$$
K_{t} = \frac{\sigma_{\text{max}}}{\sigma_{\text{avg}}}
$$

\n
$$
\sigma_{\text{avg}} = \frac{P}{A}
$$
, where *A* is the smallest cross-sectional area.

• Elementary stress equations don't apply in stress concentrations.

from charts

Figure A-15-1

Bar in tension or simple compression with a transverse hole. $\sigma_0 = F/A$, where $A = (w - d)t$ and t is the thickness.

Stress concentration factors for a variety of geometries are found in Tables A-15 and A-16

ExThe transition in the cross-sectional area of the steel bar is achieved using shoulder fillets. If the bar is subjected to a bending moment of 5 kNm, determine the maximum normal stress developed in the steel. The yield stress is $\sigma_{\rm y}$ = 500 MPa.

$$
\frac{r}{d} = \frac{16}{80} = 0.2 \qquad \frac{D}{d} = \frac{120}{80} = 1.5
$$

From the geometry of the bar,

K is 1.45 and we have

This result indicates that the steel remains elastic since the stress is below the yield stress (500 MPa).

Exam question. The steel bar shown in the figure is made of AISI 1006 cold- drawn steel and is loaded by a bending moment $M = 200$ N.m, , and two axial loads of 1 kN and 200 N as shown in the figure. is loaded by a bending moment $M = 200$ N.m, , and two axial loads of 1 kN and 200 N as shown in the figure.

maximum shear stress

UTS= 330 MPa, Sy=280 MPa AISI 1006 cold- drawn
UTS= 330 MPa, Sy=280 MPa

thickness.

Normal stress due to Fx:

$$
\sigma_x = \frac{F_x}{A} = \frac{1000}{(25-6)10} = 5.263 MPa
$$

d/w=6/25=0.24 , Kt=2.42

$$
\sigma_{max} = K_t \sigma_x = 2.42 \frac{F_x}{A} = 2.42 * 5.263 = 12.736 MPa
$$

Normal stress due to Fy

$$
d/w = 6/40 = 0.15 \quad , \quad Kt = 2.58
$$

 $\sigma_y = \frac{F_y}{A} = \frac{200}{(40-6)10} = 0.59MPa$

$$
\sigma_{max} = K_t \sigma_y = 2.58 \frac{F_y}{A} = 2.58 * 0.59 = 1.52 MPa
$$

Rectangular bar with a transverse hole in bending. $\sigma_0 = Mc/I$, where $I = (w - d)h^3/12.$

$$
\sigma_x = \frac{M_z \times \frac{d}{2}}{I} = \frac{200 \times 0.005}{(25-6)(10)^8} * 12 = 631.57 MPa
$$

 $D/d=6/25=0.24$, $d/h=6/10=0.6$ Kt=2

 $\sigma_{max} = K_t \sigma_x = 2 \times 631.57 = 1263.14 MPa$

 $\sigma_{x\ total} = 12.736 + 1263.14 = 1275.88 MPa$

Principle stresses

 $\sigma_{1,2} = 1275.88, 1.52$ $1275.88 - 1.52$ $\tau_{max} = \frac{1275.00 - 1.32}{2} = 637.18$ $b Sy = \frac{1}{\sqrt{2}} \sqrt{(\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 + (\sigma_3 - \sigma_1)^2}$ $\sigma_{eff} = \frac{1}{\sqrt{2}}\sqrt{(1275.88 - 1.52)^2 + (1.52)^2 + (1275.88)^2} = 1275.12 MPa$ $n = \frac{S_y}{S_x} = \frac{280}{100}$ $\overline{2}$

$$
n = \frac{y}{\sigma_{eff}} = \frac{200}{1275.12} = 0.22
$$