3-18 Curved Beams in Bending

Note that the NA is always located between the center of curvature
and the centroid. The sign of moment doesn't matter.



e = distance from the centroidal axis to the neutral axis, measured
towards centre of curvature, mm

Ci = distance from neutral axis to inner fiber (radius) mm
Co = distance from neutral axis to outer fiber (radius) mm.
ri = inner radius of curvature, mm

ro = outer radius of curvature, mm

rn = Radius of neutral axis, mm

R = Radius of centroidal axis, mm

A = area of section, mm2

oi = Stress in the inner fiber, N/mm?2

oo = Stress in the outer fiber, N/mm?2

The neutral axis is the axis through a beam where the stress is zero,
that is there is neither compression nor tension



The stress distribution can be found by the
following relation
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Curved Beams

* The integral may be evaluated for various
cross-sectional geometries.

 The curved-beam formula can be used to
determine the normal-stress distribution In

a curved member. tape  Ares [dh
. 7]
z_:| b (r2—r1) bin>
A =t _
= b | te W)
Z j dA/r o
A | 1 r w7 -
@ (/7=
@_‘ b 2 fra)




Table 3-4
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Ex:For the curved beam with triangular cross section
shown, determine:

(a) the centroidal radius of curvature

(b) the neutral axis location

(¢) the maximun stress corresponding to the moment of 80
N-m

(d) the stress variation

80 Nm S0 Nm
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The radius of curvature 1s found as

_ 40
Fo= — + 20
3
= 33.3 mm

(b) The neutral axis position relative to the center of
curvature 1s found as
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33.3 mm

Center of Curvature



(¢) The maximum stress will be located at either point A or point B.

M(r-R)
{:l.' .
Aer

A
80(20x10*-30.868x10"°)

~(25x107)(40x10™)(2.465x10™)(20x107)
= -35.268 MPa

.[j:
A

80(60x10 " -30.868x107")

~(25x107)(40x10*)(2.465x107*)(60x10°)
- 31.512 MPa

g:
B

point A has the maximum stress






EX:The curved bar has a cross-sectional area as shown. If it is
subjected to bending moments of 4 kNm, determine the maximum
normal stress developed in the bar.

4 kN'm 4 kMNm
e ¥, ¥
__.-":-1’
200 mm f
.-'"'-. -’"fl 'll
gy : 200mm ¥
p / S0 mm

/- 280 mm |
' |

[ ]
50 mm
L]

i
I 3 mm

Since this moment tends to decrease the bar’s radius of curvature,
it is negative. Thus the total cross-sectional area is

3 4=(0.05) ;(0.05)(0.03):3.25(103)m2

The location of the centroid is determined with reference to the

center of curvature, point 0’, S 74
=4 =0.23308m
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Thus the location of the neutral axis is determined from

Lo 24 3.25(10°) ~0.23142m
Ty j dA/r 0.0111+0.0028867
A

e=0.23142-0.233080=0.00166 m

Applying the curved-beam formula to calculate the normal stress at
B,

-, - M(y) _ (- 4)((1.23142 —02) __lemMpa N
Ae(r,—y)  3.25(1070.00166)(0.2)
- M(y) _ (-4)0.23142-0.280) _ 179 MPa

7 de(r,-y) 3.25(10°)0.00166)0.280)

A 129 MPa



r= 100mm A = 2000mm?®

The hook is lifting I(ﬂﬂ) bin(®)= 20 n. 150) = 21,97
a load of 25000N. A !

n =
(d.ﬁ. 39—21 o7 =91,024

Et:t:tantru:ltj..r e=re, r, =100 -91,024 = 8,976mm

Moment = 25kN.100mm = 2500kN.mm and Axial load is 25kN.

My 26kN . 2500kN.mm (91,024 -rjmm
A The(r-y) 2000mm* 2000 . 8,976. r (mm )*

I
A E
| I =
o
Bmm | fat |
=__ T _{00mm
et Section A-A

' F






Alternative Calculations for ¢

Calculating r, and r. mathematically and subtracting the difference can lead to large
errors if not done carefully, since r, and r. are typically large values compared to e.
Since ¢ is in the denominator of Egs. (3—64) and (3—65), a large error in e can lead to
an inaccurate stress calculation. Furthermore, if you have a complex cross section that
the tables do not handle, alternative methods for determining e are needed. For a quick
and simple approximation of e, it can be shown that'

I
e = SR (3-66)
the radius is large compared to the cross section,

. P
o= ——— (3-67)
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3-131 An offset tensile link is shaped to clear an obstruction with a geometry as shown in the figure. The
cross section at the critical location is elliptical, with a major axis of 3 in and a minor axis of 1.5 in.
For a load of 20 kip, estimate the stresses at the inner and outer surfaces of the critical section.
12-in R.
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3-18 Press and Shrink Fits

* 3 contact pressure p exist
between the hole and shaft at

the transition radius R

* p causes a radial stresses 0, =- 5

P at the contacting surfaces

Tangential stress at inner

member .,
__ R+
Git__pRz_rz

Tangential stress at the inner
surface of the outer member

roz +R?
Op =P 72— R’
0 =10.+|0 N
1701 Total radial interference




The tangentional strain of the outer member is measured by
the change in the circumference
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The change in radius of the inner member is :
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The change in radius of the outer member is :

The total deformation is :
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» Once ois known we can calculate p, or vice versa.

» Typically, ois very small, approximately 0.001 in. or less.

If the materials are the same:
E=E =E,
V=0;=0,




Types of Fits

Since there will be tolerances on both diameters of the inner and outer
members, The max. P and min. P can be determined by using the and

max. 0 and min o Eay Eav O
Shaft Shaft Shaft
6min_dmin_]:)rnax
50.100 50.000 49.950
50.080 49,900 49.900
_ Hole Hole Hole
8rnax_ max_Drnin
50.050 50.050 150.0507
50.000 49.950 50.000
Interference Transition Clearance

the designer may choose to specify an interference o, or the contact
pressure p itself and then solve for the necessary o to achieve that p.
D: for hole d: for shaft



A solid shaft is to be press fit into a gear hub. Find the maximum
stresses in the shaft and the hub. Both are made of carbon steel
(E = 30x10° psi, v=0.3).

*Solid shaft
—r,=0in, R=0.5in. (nominal)
— Tolerances: +2.3x103/+1.8x1073 in.

*Gear hub
— R=0.5in. (nominal), r,=1in
— Tolerances: +0.8x1073/0 in.



Once p is determined, assume a friction factor
f:usually 0.15 < < .20. The assembly force F
to assemble a shrink-fit assembly is given by

F=2nRp/, where L is the length of the fit.
Holding Torque T is given by:
T=FR=2mnR?HL



Flywheels

4 A flywheel is a typically a

b
[E{‘ _Eq disc which rotates on a

shaft. They are used to

smooth out small

i oscillations and to store
energy (kinetic energy of
rotation). Examples:
cars, hybrids, punch
press




