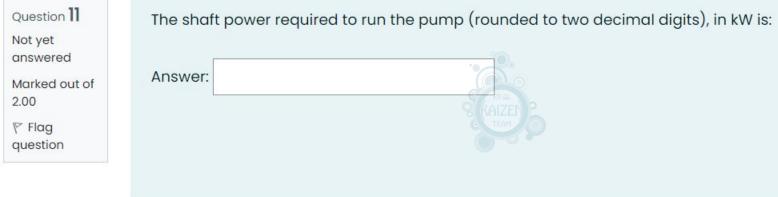
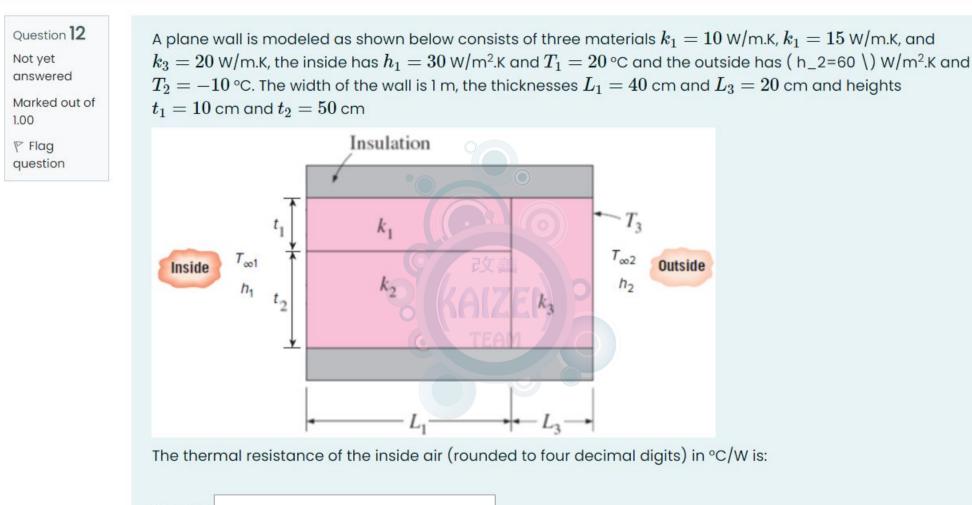
Question **20** Not yet answered

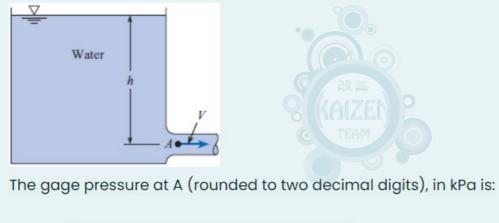

Marked out of 2.00

Answer:

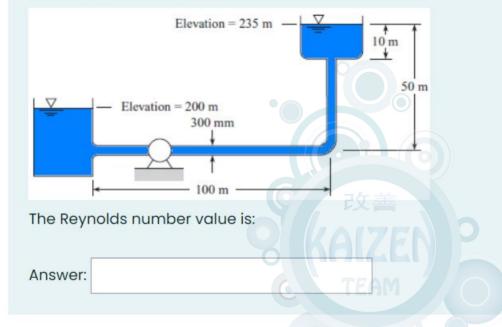

 The rate of convection heat transfer from one steel ball (rounded to two decimal digits) at the end of the process in W is:

Question 13	The thermal resistance of the wall material 2 (rounded to four decimal digits) in °C/W is:
Not yet answered	
Marked out of 1.00	Answer:
𝒫 Flag question	
Question 14 Not yet	The thermal resistance of the wall material 3 (rounded to four decimal digits) in °C/W is:
answered Marked out of 1.00 F Flag question	Answer: SKALZED C TEAM
Question 15	The total thermal resistance value (rounded to four decimal digits) between the inside $T_{\infty,1}$ and outside $T_{\infty,2}$,
Not yet answered	in °C/W is:
Marked out of 4.00	
	Answer:

Question 16 Not yet answered Marked out of	The heat transfer rate across the wall (rounded to two decimal digits), in W is:
2.00 P Flag question	
Question 17 Not yet answered	The temperature T_3 (rounded to two decimal digits) in °C is:
Marked out of 2.00 P Flag	Answer:
question	



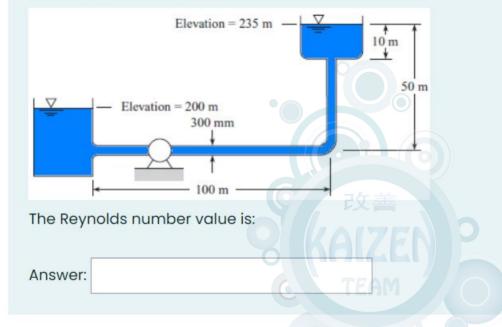
Question 8	The minor head losses (rounded to two decimal digits), in m is:
Not yet answered Marked out of 2.00	Answer:
♥ Flag question	
Question 9 Not yet answered Marked out of 3.00 F Flag question	The pump head (rounded to two decimal digits), in m is: Answer:
Question 10 Not yet answered Marked out of 2.00	The power added by the pump to the fluid (rounded to two decimal digits), in kW is: Answer:


Question 5 Not yet answered Marked out of 4.00

P Flag question The velocity in the outlet pipe from this reservoir is 10 m/s and h = 25 m. Assume negligible friction and viscous effects. Under these conditions. Assume the water density is 1000 kg/m^3 .

Question **6** Not yet answered Marked out of 2.00 P Flag question

Water is pumped from the lower reservoir to the upper reservoir at a rate of 0.25 m³/s. The inlet is slightly rounded (r/D = 0.1), the exit is sharp-edged, the bend is smooth and flanged, the pipe is made of cast iron, and the pump efficiency is 80%. Assume the water density, ρ , is 1000 kg/m³ and the dynamic viscosity, μ , of the water is 10⁻³ kg/m.s.

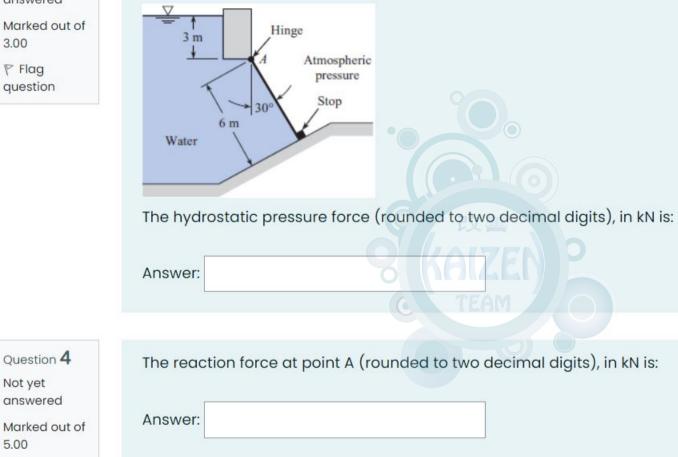


Question 7
Not yet answered
Marked out of 3.00
♥ Flag question

The major head losses (rounded to two decimal digits e.g. 1.24), in m is:

Question **6** Not yet answered Marked out of 2.00 P Flag question

Water is pumped from the lower reservoir to the upper reservoir at a rate of 0.25 m³/s. The inlet is slightly rounded (r/D = 0.1), the exit is sharp-edged, the bend is smooth and flanged, the pipe is made of cast iron, and the pump efficiency is 80%. Assume the water density, ρ , is 1000 kg/m³ and the dynamic viscosity, μ , of the water is 10⁻³ kg/m.s.



Question 7
Not yet answered
Marked out of 3.00
♥ Flag question

The major head losses (rounded to two decimal digits e.g. 1.24), in m is:

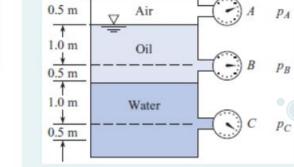
Question 3 Not yet answered Marked out of 3.00 P Flag question

The gate shown is circular with diameter 6 m. Let the weight of the gate be 100 kN. Assume the water density is 1000 kg/m^3 .

P Flag question

Question 4

Not yet answered


5.00

Question]

Not yet answered

Marked out of 3.00

 For the closed tank with pressure gages readings of $P_A=20$ kPa, and $P_B=27.5$ kPa. Assume the water density is 1000 kg/m³.

The specific gravity of the oil (rounded to three decimal digits e.g. 1.278), is:

Answer:

Question 2 Not yet answered Marked out of 4.00

question

The pressure reading on gage C (rounded to two decimal digits), in kPa is:

Ouestion 18 Not yet answered Marked out of 2.00 P Flag

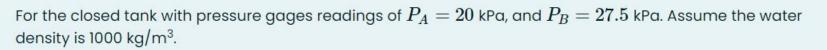
question

Steel balls 12 mm in diameter are annealed by heating to 1150 K and then slowly cooling to 400 K in an air environment for which $T_{\infty} = 325 \text{ K}$ and $h = 20 \text{ W/m}^2 \cdot \text{K}$. Assuming the properties of the steel to be $k = 40 \text{ W/m} \cdot \text{K}$, $\rho = 7800 \text{ kg/m}^3$, and $c = 600 \text{ J/kg} \cdot \text{K}$

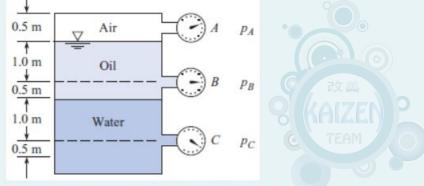
The time required for the cooling process in s is:

Answer:

Answer:


Question 19 Not yet answered

Marked out of 2.00


P Flag question The total amount of heat transfer from one steel ball (rounded to two decimal digits) in J is:

Question Not yet answered Marked out of 3.00

₽ Flag question

The specific gravity of the oil (rounded to three decimal digits e.g. 1.278), is:

