Q (4: 5 pts) A firm produces three components; A10, B10, and C10. Moving two units of A10 or four units of C10 is equivalent to moving on B10. The departments are arranged in a linear flow pattern in the order ABC. Prepare a from-to-chart. Daily production Component Equivalent daily flows Routing Total flow compared compared to B10 % to BHO Cto A10 80 40 ABC B10 75 BAC C10 20 CAC FROM/TO

120 86 20 0

Q (5: pts) A firm produces three components; A10, B10, and C10. Moving two units of A10 or four units of C10 is equivalent to moving on B10. The departments are arranged in a linear flow pattern in the order A-B-C. Given the distance between the departments (Pickup/Delivery at midpoints) = 40 ft.

Component	Daily production	Equivalent daily flows	Routing	Total flow compared to C10	Total traveled distance/route
'A10	40	80/	ABC	1601	80/1
B10	30	120	BAC	240/	12087
C10	20	30	BCAC	655	Roof

Q (6: 5 pts) Three criteria A to C are used to evaluate the alternative designs 1, 2, and 3 based on the most important criterion (largest percentage). Identify the important criterion and determine the best design.

Criteria A	ВС	Row total Row %
A 1	5 1/5	11 2 47.7 0.476
(B) +	1 10	
C 3	1	6.1 25.1
		3 Row total Row % 0 - 263 4 Celler 5 - 2 - 26.2
Design alternative	1 2	3 Row total Row %
Design atternative	1 1/5	5 6.3/ 36.7 0-763 49
2	9 1	1/10
(3)	1/5	1 14.5 43.6 0.961
6.76	-A 0516 A	6 0.523
Design evaluation	3	
Design evaluation	1 0.153	N
2	0.153	
-6	125.0	
	6.7	128 Criteria B
La	Hal 0.43	8
1,00		
		Design =

The University of Jordan

Department of Industrial Engineering Facilities Planning Midterm Exam 2023 Prof. Al-Refaie Abbas

Q1 (8 points) Please fill in the missing terms or phrases in the blank.

- Flows can be measured Quality using the closeness relationship values.

 The Activity Detroit is used to develop a work schedule for the facilities design effort.
- Reducing the flow density through containerization results in minimizing to the Cost
- The flow within Coscil-- department typically occurs between workstations and aisles
- In the pull production system, the web is used to authorize the production of more components or
- The subjects of the Abacial rand and are the materials, parts, and supplies purchased by a firm and required for the production of its product.
- An important consideration in the Tlandscape departments is the location of the pickup and delivery
- If the largest load is between 6 and 12 ft², the aisle allowance percentage is $\frac{10-2}{2}$
- 9. Should be designed to maximize operator safety, comfort, and productivity.
- 10. The resources of the adecia include the manufacturing, assembly, and storage department
- 11. If the product is large and awkward to move, the type of the planning department should be
- 12. When both variety and volume are low, the preferred layout should be 1/201 location 13. The principle of 1/201 he fincludes the elimination of the traveled distance.
- 14. Increased work in process is one limitation of the fro (8) layout.
- 15. For Troduct D planning department, all the workstations required to produce the product department should be
- 16. If the flow of products from a manufacturing facility is to be the subject of the flow, then the flow process is referred to as 1-245+507- out Fribullion Surfer
- 17. Two departments cannot be placed adjacent to each other with a relationship value of X (4)
- 18. A planning department consists of three machines;4 ft ×12 ft, The total area required considering the 10 % aisle allowance = 158

Q3 (4 pts) Cases of the product are conveyed to a palletizer, which has to be programmed by an operator. Typically, 25 pallet loads are completed before the palletizer has to be reprogrammed; reprogramming requires 6 minutes. The palletizer operates automatically for 40 minutes. The operator must restock the machine with empty pallets; this can be done at any time during the last 10 minutes of the palletizer's run time; restocking pallets requires 5 minutes. Travel time between palletizers, plus data entry in the computer by the operator, requires 3 minutes.

(0+6) (0+6) 4

- The cost per unit produced without creating idle time for the operator = -----

mey CI

Clo+4x30)(6+8) : 30.3\$

E2 ~

(a+6) 246