## Complete the MRP record for item A

|                        |     |     | Lot S | Size:  |     | POQ (P=3)<br>2 weeks |     |     |     |     |  |  |  |
|------------------------|-----|-----|-------|--------|-----|----------------------|-----|-----|-----|-----|--|--|--|
| Item: A                |     |     | Lead  | Time   | :   |                      |     |     |     |     |  |  |  |
| Description:           |     |     | Safe  | ty Sto | ck: | 100                  |     |     |     |     |  |  |  |
| Week                   | 1   | 2   | 3     | 4      | 5   | 6                    | 7   | 8   | 9   | 10  |  |  |  |
| Gross requirements     |     |     | 70    |        | 50  |                      |     | 55  | 80  |     |  |  |  |
| Scheduled receipts     |     |     |       |        |     |                      |     |     |     |     |  |  |  |
| Projected on hand      | 100 | 100 | 150   | 150    | 100 | 100                  | 100 | 180 | 100 | 100 |  |  |  |
| Planned receipts       | /   | 1   | 120   | /      | /   | /                    | 1   | 135 | /   | 1   |  |  |  |
| Planned order releases | 120 | /   |       |        |     | 135                  | /   |     |     |     |  |  |  |



| Item: A                     |     |    |    |    |    |    |    |    | Size: |    |
|-----------------------------|-----|----|----|----|----|----|----|----|-------|----|
|                             |     |    |    |    |    |    |    |    |       |    |
| Quantity on Hand: <u>55</u> | 1   | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9     | 10 |
| Forecast                    | 45  | 45 | 45 | 45 | 45 | 50 | 50 | 50 | 50    | 50 |
| Customer orders (booked)    | 10  | 0  | 50 | 48 | 7  | 0  | 0  | 0  | 0     | 0  |
| Projected on-hand inventory | 10  | 60 | 10 | 57 | 12 | 57 | 7  | 52 | 2     | 47 |
| MPS quantity                | D   | 95 | U  | 25 | 0  | 95 | 0  | 45 | 0,    | 45 |
| MPS start                   | 95  | /  | 95 | /  | 45 | /  | 95 | /  | 15    | /  |
| ATP                         | 10/ | 婚  |    | 40 |    | 95 |    | 95 |       | 95 |
|                             | X   | 45 |    | /  | ,  |    |    |    | /     |    |



## **Forecast Error**

1. Forecast error measures:

$$E_{t} = D_{t} - F_{t}$$

$$CFE = \sum E_{t}$$

$$\overline{E} = \frac{CFE}{n}$$

$$MSE = \frac{\sum E_{t}^{2}}{n}$$

$$\sigma = \sqrt{\frac{\sum (E_{t} - \overline{E})^{2}}{n - 1}}$$

$$MAD = \frac{\sum |E_{t}|}{n}$$

$$MAPE = \frac{(\sum |E_{t}|/D_{t})(100\%)}{n}$$

## Causal Methods: Linear Regression

2. Linear regression:

$$Y = a + bX$$

## Time-Series Methods

3. Naïve forecasting:

Forecast = 
$$D_t$$

4. Simple moving average:

$$F_{t+1} = \frac{D_t + D_{t-1} + D_{t-2} + \cdots + D_{t-n+1}}{n}$$

5. Weighted moving average:

$$F_{t+1} = \text{Weight}_1(D_t) + \text{Weight}_2(D_{t-1}) + \text{Weight}_3(D_{t-2}) + \cdots + \text{Weight}_n(D_{t-n+1})$$

6. Exponential smoothing:

$$F_{t+1} = \alpha D_t + (1 - \alpha) F_t$$

7. Trend Projection using Regression

$$F_t = a + bt$$

8. Tracking signal:

$$\frac{\text{CFE}}{\text{MAD}}$$
 or  $\frac{\text{CFE}}{\text{MAD}}$ 

9. Exponentially smoothed error:

$$MAD_{t} = \alpha |E_{t}| + (1 - \alpha)MAD_{t-1}$$

| Month | Number of customers | Forecast | E.   | 1E+1 | 1 E1 + 1007 |
|-------|---------------------|----------|------|------|-------------|
| 1     | 810                 |          | 1    |      |             |
| 2     | 790                 |          |      |      |             |
| 3     | 840                 |          |      |      |             |
| 4     | 825                 | 827      | - 2  | 2    | · 24 1.     |
| 5     | 800                 | 825      | - 25 | 25   | 3.1%        |
| 6     | 890                 | 809      | 81   | 181  | 4.1%        |
| Told  |                     |          |      |      | 12.447.     |

a) Use a 3-months weighted moving average to forecast the number of customers for month 4 through 6. Use weights of 0.7, 0.2 and 0.1, giving more weight to more recent data.

b) Calculate the mean absolute percent error as of the end of month 6 (i.e. from month 4 until 6)

c) Calculate the mean bias?

d) Comment on the type of bias.

a) 
$$F_{4} = (840)(.7) + 740(.2) + 810(.1) = 827 \text{ customer}$$
 $F_{5} = 825(.7) + 840(.2) + 740(.1) = 824.5 \approx 1825 \text{ customer}$ 
 $F_{6} = 800(.7) + 825(.2) + 840(.1) = 209 \text{ customer}$ 

b)  $MAPE = \frac{(|E_{1}| * 1000.1)}{D^{1}} = \frac{12.447.}{3} = \frac{4.1467.}{3}$ 

A restaurant operates seven days a week. The daily requirements (in workers) are estimated as follows:

|                   | M | T | W | Th | F | S | Su |
|-------------------|---|---|---|----|---|---|----|
| Base Requirements | 2 | 3 | 5 | 4  | 5 | 4 | 4  |

Each worker is required to work five days per week, and each must have two days off.

- a) Develop a workforce schedule that covers all the above requirements.
- b) Determine the minimum number of workers needed.
- c) Determine the amount of total slack capacity.

| M 2 2 2 1 1 0 0 | T 3 3 3 2 1 0 0 | W 5 4 3 2 1 0 0 | Th 4 3 2 1 0 0 0 | F 5 4 3 2 1 1 0 | 5 4 3 2 2 1 0 0 | su ( 4 3 2 2 1 0 | EM 1 2 3 4 5 6 7 x | MT MT S Su Su M Th F MT | Em { 1 2 3 4 5 6 Reg Capuly | 3 | - All - 5 | 0 | 5 5 1 | 000 | • fe 64 6 |
|-----------------|-----------------|-----------------|------------------|-----------------|-----------------|------------------|--------------------|-------------------------|-----------------------------|---|-----------|---|-------|-----|-----------|
|                 |                 | s lack          |                  | 4               | 1               |                  |                    |                         |                             |   |           |   |       |     |           |