

- det (AxAT) is always integer
- det (AxB) is equal to (det (B) x det (AT)).
- det (AxB) is equal to (det (B) x det (AT)) if and only if AxB is commutative.
- det (AxB) is equal to (det (B) x det (AT)) if and only if AxB is invertible.
- det (AxB) is equal to (det (B) x det
 (AT)) if and only if AxB is commutative and invertible.

- 1. Assume that A and B are 3x3 matrices. Which of the following statements is correct (det=determinant):
 - det (A+B) is equal to the (det (A)+ det (B)).
 - det (A+B) is equal to the (det (A)+ det (B)) when det (B) is equal to zero.
 - det (A+B) is equal to the (det (A)+ det (B)) when one of the matrices is zero.
 - det (A+B) is equal to the (det (A)+ det (B)) when det (A) is equal to zero.
 - det (A+B) is equal to the (det (A)+ det
 (B)) when det (B) is equal to zero or det (A) is equal to zero