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System’s Response

* \We can find the time response of dynamic
systems for arbitrary initial conditions and
Inputs

y(@) =LY ()] = L7[G(s)U(s)]

» Classifying the response of some standard
systems to standard inputs can provide
Insight
* Ex Systems: first order, second order

* Ex Inputs:  impulse, step, ramp, sinusoid



System’s Order

The order of the system is given by the maximum power of s in the denominator polynomial, ((s).
Here,Q(s}=a,s’+al ek gk PR ta sta.

Now, n is the order of the system

When n = (, the system is zero order system,

When n = 1, the system is first order system.

When n = 2, the system is second order system and so on.

The numerator and denominator polynomial of equation (2.10) can be expressed in the factorized
form as shown in equation (2.11).

(9= 20 (6+2)647)....(54 25)
QS (5+P,)(S+ D)o (s+p,)
where Zl,Z: mewwem‘

Pis Py P, A€ poles of the system.

Now, the value of n gives the number of poles in the transfer function. Hence the order is also
given by the number of poles of the transfer function. W
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Transient Response and Steady-State
Response.

The time response of a control system consists of two parts:
- the transient response

- and the steady-state response.

By transient response, we mean that which goes from the initial
state to the final state.

By steady-state response, we mean the manner in which the
system output behaves as t approaches infinity. Thus the system

response c{t) may be written as
c(t) = ctr(t) + css(t)



Laplace Transform of Standard Functions

Step Function:

The unit step function is,

u(t =_1 fortz0
= 0 fort<0
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Laplace Transform of Standard Functions

Ramp Function:

The unit ramp function is defined as,

fort=0
fort<0

r[t} t

=0

P ac-

Lr®) = [r()e™dt=[te™ at
g o

Integrating by parts,

L {x(t)] =

Lit u(t)] = as r(t) = t u(t)



Laplace Transform of Standard Functions

Ramp Function:
amp THnet

The unit ramp function is defined as,

fort=0
fort<0

it) =t
0

L [x(t) = Tr([) e dt = T e ™ ke
i)

Integrating by parts,

_ 1 e ™1 1fe™ of .
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ol = 5
Litu®} = 4 as t{t) = ¢ u(t)



Laplace Transform of Standard Functions

Impulse Function:

The unit impulse function is §(t) and defined as,

Ei(t) =1 fort=0
=0 fort=0

We know the relation between unit step and unit impulse.

0 = 5

e

Taking Laplace transform of both sides,

L {3(t)} = L{d‘:u@}

L {%@} = s F(s) - £ (07)

L {59} = 5. Liu(®) - u(),_,
u(t),_,- = 0

Liu®) = <

L{3() = s.~-0
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FIRST-ORDER SYSTEMS

= Consider the first-order system shown in Figure 5-1(a).

Physically, this system may represent an RC circuit, thermal

system, or the like

C(S) 1 Ris) E(s) 1

R(s) Ts+ 1 T

Cis) R(s)

|

- =

Ts+1

= Unit-Step Response of First-Order Systems. Since the
Laplace transform of the unit-step function is 1/s, substituting
R(s)=1/s into Equation, we obtain

Cis)



cty=1—¢e"",  fort=0

Equation states that initially the output c(t) is zero and finally it becomes
unity.

One important characteristic of such an exponential response curve c(t)
is that at t=T the value of c(t) is 0.632, or the response c(t) has reached
63.2% of its total change

This may be easily seen by substituting t=T in c(t).That is,
c(T)=1-e71 =0.632
The exponential response curve c(t) is shown.

In one time constant, the exponential response curve has gone from 0
to 63.2%of the final value.

In two time constants, reaches 86.5%. /sl?pe:'?
Att=3T, 4T, and 5T, the response ‘
reaches 95%, 98.2%, and 99.3%,
Thus, fort > 4T, the response
remains within 2%. 0.632
As seen from Equation

, the steady state is reached

mathematically only after an

infinite time. T
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»  Unit-Ramp Response of First-Order Systems.

= Since the Laplace transform of the unit-ramp function is 1/s2, we obtain
the output of the system of

1 1
C(s) = —
TS - 1 5 ) |
. . . . . ‘ ot
Expanding C(s) into partial fractions gives )
- 2 |
C(s) = =~ +— ! 2
s s Ts+1 r
Taking the inverse Laplace transform: al <
c(ty=t—-T +Te'",  fort =0 [ @
2T
The error signal e(f) 1s then
e(t) = r(t) — c(t) o
- _ T('l _ /) 0 2T aT 6T ¢

—_—

Above Equation states that initially the output c(t) is zero and finally it becomes unity
—



Unit-Impulse Response of First-Order Systems. For the unit-impulse input,
R(s) = 1 and the output of the system of Figure 5-1(a) can be obtained as

1
C(s) = 5-7
&) = T 11 6N
The inverse Laplace transform of Equation (5-7) gives
c(t) = ie"”T, fort =0 (5-8)

T

The response curve given by Equation (5-8) 1s shown in Figure 5-4.
clt)
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= for the unit-ramp input the output c(t) is

c(ty=t—T + Te'T, fort =0

= For the unit-step input, which is the derivative of unit-ramp input, the
output c(t) is
c(t)y =1— e, fort =0

= Finally, for the unit-impulse input, which is the derivative of unit-step
input, the output c(t) is

c(t) = %e"-’“r, fort = 0

\_/
Comparing the system responses to these three inputs clearly indicates that the response
to the derivative of an input signal can be obtamed by differentiating the response of the
system to the original signal. It can also be seen that the response to the integral of the
original signal can be obtamed by integrating the response of the system to the original
signal and by determining the integration constant from the zero-output nitial condi-
tion. This 1s a property of linear time-invariant systems. Linear time-varying systems and
nonlinear systems do not possess this property.



= First-Order Systems:

G(s) Y(s) _ k
= Step Response: — U(s) zs+l

/initial slope=1/t
k [

0.8k /
= 0.6k
e
=
o

0.4k |

0.24

0 | A |
0 T 2T 31 4t 51

time (1)




Transient Response Specifications: Rise Time
Let’s first take a look at Ist-order step response

a

H(s) = T a’ a>0 (Ena.hle pole)
DC gain =1 (by FVT
gain = 1 (hy FVT)
H(. 1 1
Step response: Y (s) = (5) = ¢ = =
s s(s+a) s s—+a

2T

Rise time t,: the time it
takes to get from 10% of
steady-state value to 90%




Rise Time
Step response: y(t) = 1(t) — e~

V(1)
10 -

0.8]
Rise time t,: the time it

takes to get from 10% of
steady-state value to 90%

0.6]

0.4]

02

05 10 15 20
In this example, it is easy to compute ¢, analytically:

_ln0.9

a

_an.l

l—e 01 =01 e ™1=09 {y;=

1 —e 909 =(.9 e~ 09 =01 tog =

a
In0.9—-1n0.1 In9
tr = too —to1 = = — & :;L"Z'E

a a




Transient Response Specs
Now let’s consider the more interesting case: 2nd-order response

w? w2

Hi(s) = n = G
) = 2 2Cns + w2 (s +0)? + w3

where 0 = (w,, wg = wp\/1 — 2 (¢ < 1)
Im
L ’-—bimaa'wg Y
eq|_

o
Step response: y(t) =1 —e 7" (cos(wdt) + — Sin(wdt))
W



Transient-Response Specs

o
Step response: y(t) =1—e" (cos(wdt) + — Sin(wdt))
W

o
9
T

""""""iU”I
14

» rise time #, — time to get from 0.1y(oo) to 0.9y(o0)

» overshoot M, and peak time t,

» settling time ¢, — first time for transients to decay to
within a specified small percentage of y(oco) and stay in

that range (we will usually worry about 5% settling time)
T



Transient-Response (or Time-Domain) Specs

|
|
|
|
s § Y ..|.--|I--|"""""{.1'Jn.r
2 4 6 8 10 12 14

Do we want these quantities to be large or small?
» t, small
» M, small
» t, small
» ., small

Trade-offs among specs: decrease t, — increase M, ete.
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Formulas for I cs: Rise Time

pm—

! wnf

1
1
|
1
|
|
|
|
1
|
I
|
Ol
8

10 12 14

Rise time 7, — hard to calculate analytically.
Empirically, on the normalized time scale (t — w,, ), rise times
are approrimately the same

(exact for ¢ = 0.5)

-  ——

So, we will work With (good approx. when ¢ ~ 0.5)



Formulas for TD Specs: Overshoot & Peak Time

14,

12F

1.0

0.8}
0.6f
04f
02f

t, is the first time t > 0 when y/(t) = 0

y(t) =1—e 7" (COS(wdt)

0_2

y' (1) ( ,
Wd

SO

g .
+ — sin(wyt)
W

)

e 7'sin(wgt) = 0 when wyt = 0, 7. 27, ..

)
wi-¢



Formulas for TD Specs: Overshoot & Peak Time

y(1)
14-

12} M,

1oFzzoofzza-2- Nz oo oo oo Sooooo
0.8}
0.6
0.4}
02F/ !

Wntp

1 2 L 4 L

We have just computed t, = —
Wd

To find M, plug this value into y(?):




Formulas for T'D Specs: Settling Time

y(7)

14r

12f : M,

1-0_55553_553555: T T

o8f [ i

o6f [I | |

04f [ 1

o028/ | |

Lnfr Gwnty  jwnts w, 1
2 6 8 10 12 14
_ t') — y(co
t. = min {t >0 ly(#) — y(oo)] < 0.05 for all ¢ > t} (here.
y(o0)
y(oo) = 1)
| _ —ot . g = .
y(t)— 1| =e cos(wgt) + — sin(wyt)
Wd
here, e=7% is what matters (sin and cos are bounded between
ot o In 0.05 5

+1), s0o e 7" < 0.05 this gives ty = — ~—| =

o . Z_ \Wn



Formulas for TD Specs

w2 02 -+ l:,u(%

His) — n _ &




Second-Order Systems

J}f’l ¥

Im (joo)

A

’ X X s-plane
(¢=0) undamped (¢=1) crit damped
}{ X X > Re (o)
U]
A J;E"}
X X

> {

(0<¢< 1) underdamped ((>1) overdamped




TD Specs in Erequency Domain

We want to visualize time-domain specs in terms of admussible

. -
pole locations for the 2nd-order system
— D
2 2 2
W o +w
H(S) _ n _ d

_ $2 4+ 20wps + w2 (s+0)2+w?
where o0 = Cw,,

wd:wnvl_gz

Step response: y(t) =1 — e~ 7t (cos(wdt) + = Sin(wdt))
—-—__/-——- —

Im




Rise Time in Frequency Domain

Suppose we want t,. < ¢ (¢ is some desired given value)
1.8 1.8

tr " — < c — Wp = ——
Wn, C

Geometrically, we want poles to lie in the shaded region:

In

A

1

w-n -
v\ »
- Re

; .

(recall that w,, is the magnitude of the poles)



Overshoot in Frequency Domain

Suppose we want M, < c

M, = exp ( \/lﬂciz <c — need large damping ratio
— G

W
decreasing function

e

Geometrically, we want poles to lie in the shaded region:
Im
A
C o w-nc
vl—C2 E"J-Jr:n"\/l_CQ

o
— — —cotyp

Yr - Re Wd

— need ¢ to be small

Intuition: good damping —
good decay in 1/2 period




Settling Time in Frequency Domain

Suppose we want ts < ¢

3 3
tS ~ — S C — a 2 —
o C
Want poles to be sufficiently fast (large enough magnitude of
real part):
Im
o — Intuition: poles far to the

left — transients decay
faster — smaller ¢,

Sln |l w
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