
4 Two-Level (2k) Factorial Designs

• Many applications of response surface methodology are based on fitting one of the following
models:

First order model y = β0 + β1x1 + β2x2 + · · ·+ βkxk (3)

Interaction model y = β0 +
k∑

i=1

βixi +
∑ k∑

i<j

βijxixj (4)

Second order model y = β0 +
k∑

i=1

βixi +
∑ k∑

i<j

βijxixj +
k∑

i=1

βiix
2
i (5)

• One commonly-used response surface design is a 2k factorial design.

• A 2k factorial design is a k-factor design such that

(i) Each factor has two levels (coded −1 and +1).

(ii) The 2k experimental runs are based on the 2k combinations of the ±1 factor levels.

• Common applications of 2k factorial designs (and the fractional factorial designs in Section 5
of the course notes) include the following:

– As screening experiments: A 2k design is used to identify or screen for potentially
important process or system variables. Once screened, these important variables are
then incorporated into a more complex experimental study.

– To fit the first-order model in (3) or the interaction model in (4): The 2k design can be
used to fit model (3) or (4). One application of fitting these models is in the method of
steepest ascent or descent (Section 6 of the course notes).

– As a building block for second-order response surface designs: 2k designs are used to
generate central composite designs (CCDs) and Box-Behnken designs (BBDs).

• We will first analyze each 2k design as a fixed effects design. We will also generalize the
fixed effects results to the regression model approach for which the model contains regression
coefficients β0, β1, β2, . . . as in (3) and (4).

• Before analyzing the data, you must determine if the design was completely randomized or
if blocking was used. Your answer to this question will indicate the appropriate analysis.
Initially, we will assume the design was completely randomized.

4.1 The 22 Design

• The simplest 2k design is the 22 design. This is a special case of a two-factor factorial design
with factors A and B having two levels.

• Because a 22 design has only 4 runs, several (n) replications are taken.

• Notationally, we use lowercase letters a, b, ab, and (1) to indicate the sum of the responses
for all replications at each of the corresponding levels of A and B.

– If the lower case letter appears, then that factor is at its high (+1) level.

– If the lower case letter does not appear, then that factor is at its low (−1) level.
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Factor Level Coded Replicate Sum of n
Combination Levels 1 2 · · · n Replicates
A low , B low −1 −1 xxx xxx · · · xxx (1) = y11·
A high, B low +1 −1 xxx xxx · · · xxx a = y21·
A low , B high −1 +1 xxx xxx · · · xxx b = y12·
A high, B high +1 +1 xxx xxx · · · xxx ab = y22·

• We will use the notation A+ and A− to represent the set of observations with factor A at its
high (+1) and its low (−1) levels, respectively. The same notation applies to B+ and B− for
factor B.

a and ab correspond to A+ and (1) and b correspond to A−.

b and ab correspond to B+ and (1) and a correspond to B−.

• yA+ and yA− are the means of all observations when A = +1 and A = −1, respectively.

• yB+ and yB− are the means of all observations when B = +1 and B = −1, respectively.

• The average effect of a factor is the average change in the response produced by a change
in the level of that factor averaged over the levels of the other factor.

• For a 22 design with n replicates, the

— Average effect of Factor A, denoted A, is

A = yA+ − yA− = =
1

2n
[ab+ a− b− (1)] .

— Average effect of Factor B, denoted B, is

B = yB+ − yB− = =
1

2n
[ab− a+ b− (1)] .

— Interaction effect between Factors A and B, denoted AB, is the difference between (i)
the average change in response when the levels of Factor A are changed given Factor B is at
its high level and (ii) the average change in response when the levels of Factor A are changed
given Factor B is at its low level:

AB = (yA+B+ − yA−B+) − (yA+B− − yA−B−)

= =
ab− a− b+ (1)

2n

Note: The results would be the same if we switched the roles of A and B in the definition:

AB = (yA+B+ − yA+B−) − (yA−B+ − yA−B−)

= =
ab− a− b+ (1)

2n

Sums of Squares for A, B and AB.

• Note that when estimating the effects for A, B and AB the following contrasts are used:

ΓA = ab+ a− b− (1) ΓB = ab− a+ b− (1) ΓAB = ab− a− b+ (1)
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• ΓA, ΓB, and ΓAB are used to estimate A, B, and AB, and they are orthogonal contrasts.

– The coefficient vectors for the contrasts are [1 1− 1− 1] for A, [1− 1 1− 1] for B, and
[1 − 1 − 1 1] for AB. Note the dot product of any two vectors = 0. This is why they
are called orthogonal contrasts.

• The sum of squares for contrast Γ is 7

• For a replicated 22 design, this is equivalent to:

SSA =
[ab+ a− b− (1)]2

4n
SSB =

[ab− a+ b− (1)]2

4n
SSAB =

[ab− a− b+ (1)]2

4n

• Because there are two levels for both factors, the degrees of freedom associated with each sum
of squares is 1. Thus, MSA = SSA, MSB = SSB, and MSAB = SSAB.

• Because there are n replicates for each of the four A ∗ B treatment combinations, there are
4(n− 1) degrees of freedom for error for the four-parameter interaction model in (4).

• It is common to list the treatment combinations in standard order: (1), a, b, and ab. Many
references use a shortened notation (− or +) to denote the low (−1) and high (+1) levels of
a factor.

Example: An engineer designs a 22 design with n = 4 replicates to study the effects of bit size (A)
and cutting speed (B) on routing notches in a printed circuit board.

A B AB Replicates Totals
− − + 18.2 18.9 12.9 14.4 (1) = 64.4
+ − − 27.2 24.0 22.4 22.5 a = 96.1
− + − 15.9 14.5 15.1 14.2 b = 59.7
+ + + 41.0 43.9 36.3 39.9 ab = 161.1

Note: the signs in the AB column are the signs that result when multiplying the A and B columns.

• The estimates of the fixed effects are:

A =
ΓA

2n
=

ab+ a− b− (1)

2n
=

161.1 + 96.1− 59.7− 64.4

8
=

B =
ΓB

2n
=

ab− a+ b− (1)

2n
=

161.1− 96.1 + 59.7− 64.4

8
=

AB =
ΓAB

2n
=

ab− a− b+ (1)

2n
=

161.1− 96.1− 59.7 + 64.4

8
=

• The sum of squares SSi = Γ2
i /4n for i = A,B,AB, T is:

SSA =
133.12

16
= 1107.2256 SSB =

60.32

16
= 227.2556

SSAB =
69.72

16
= 303.6306 SST =

2∑
i=1

2∑
j=1

4∑
k=1

ynijk−
y2···
4n

= 10796.7−381.32

16
= 1709.8344

SSE = SST − SSA − SSB − SSAB = 71.7225

• Sums of squares can also be calculated using the formulas for a two-factor factorial design.
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The Regression Model

• If both factors in the 22 design are quantitative (say, x1 and x2), we can fit the first order
regression model

y = β0 + β1x1 + β2x2 + ε.

or, we can fit the regression model with interaction:

y = β0 + β1x1 + β2x2 + β12x1x2 + ε.

• The least squares estimates [ b0 b1 b2 b12 ]′ = (X′X)−1X ′y are directly related to the estimated
effects A, B, and AB from the fixed effects analysis:

b0 =
ab+ a+ b+ (1)

4n
or b0 = y

b1 =
ΓA

4n
=

ab+ a− b− (1)

4n
or b1 = A/2

b2 =
ΓB

4n
=

ab+ b− a− (1)

4n
or b2 = B/2

b12 =
ΓAB

4n
=

ab+ (1)− a− b
4n

or b2 = AB/2

• For the previous example:

b0 = y = 381.3/16 = 23.83125
b1 = A/2 = 16.6375/2 = 8.31875
b2 = B/2 = 7.5375/2 = 3.76875
b12 = AB/2 = 8.7125/2 = 4.35625

• Therefore, the fitted regression equation is

ŷ = 23.83125 + 8.31875x1 + 3.76875x2 + 4.35625x1x2

where (x1, x2) are the coded levels of factors A and B.

4.2 The 23 Design

• Let A, B, and C be three factors each having two levels. The design which includes the 23 = 8
treatment combinations of A ∗B ∗ C is called a 23 (factorial) design.

• The following table summarizes the eight treatment combinations and the signs for calculating
effects in the 23 design (I =intercept). Assume each treatment is replicted n times.

Factorial Effect Sum of
I A B C AB AC BC ABC replicates
+ − − − + + + − (1) = y111·
+ + − − − − + + a = y211·
+ − + − − + − + b = y121·
+ + + − + − − − ab = y221·
+ − − + + − − + c = y112·
+ + − + − + − − ac = y212·
+ − + + − − + − bc = y122·
+ + + + + + + + abc = y222·

• The signs in the interaction columns are the signs that result when multiplying the main effect
columns in the interaction of interest. Note that all columns are mutually orthogonal.
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• For a 23 design with n replicates, each estimated effect is the differences between two means:
The first mean is the average of all data corresponding to the + rows in an effect column and
the second mean is the average of all data corresponding to the − rows in an effect column.

Average effect of Factor A, denoted A, is

A = yA+ − yA− =
(a+ ab+ ac+ abc)

4n
− (1) + b+ c+ bc

4n

=
1

4n
[a+ ab+ ac+ abc− (1)− b− c− bc] .

Average effect of Factor B, denoted B, is

B = yB+ − yB− =
(b+ ab+ bc+ abc)

4n
− (1) + a+ c+ ac

4n

=
1

4n
[b+ ab+ bc+ abc− (1)− a− c− ac] .

Average effect of Factor C, denoted C, is

C = yC+ − yC− =
(c+ ac+ bc+ abc)

4n
− (1) + a+ b+ ab

4n

=
1

4n
[c+ ac+ bc+ abc− (1)− a− b− ab] .

Two-factor interaction effect between Factors A and B, denoted AB, is

AB =
ab+ abc− a− ac

4n
− b+ bc− (1)− c

4n
=

abc+ ab+ c+ (1)− a− ac− bc− b
4n

.

Two-factor interaction effect between Factors A and C, denoted AC, is

AC =
ac+ abc− a− ab

4n
− c+ bc− (1)− b

4n
=

abc+ ac+ b+ (1)− ab− a− bc− c
4n

.

Two-factor interaction effect between Factors B and C, denoted BC, is

BC =
bc+ abc− b− ab

4n
− c+ ac− (1)− a

4n
=

abc+ bc+ a+ (1)− ab− b− ac− c
4n

.

Three-factor interaction effect between Factors A, B and C, denoted ABC, is the
average difference between the AB interaction for the two different levels of C. That is,

ABC =
(abc− bc)− (ac− c)

4n
− (ab− b)− (a− (1))

4n

=
abc+ a+ b+ c− ab− ac− bc− (1)

4n

• Let Γ = the contrast sum in the numerator for any of the effects. Then the sums of squares

associated with that effect is SS =
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Geometric Representation for a 23 Design

A effect B effect C effect

Estimation of Main Effects
A effect B effect

C effect
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Estimation of Two-Factor Interaction Effects

Estimation of the Three-Factor Interaction Effect
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The Regression Model

• If all three factors in the 23 design are quantitative (say, x1, x2, and x3), we can fit the
regression model

y = β0 + β1x1 + β2x2 + β3x3 + β12x1x2 + β13x1x3 + β23x2x3 + β123x1x2x3 + ε. (6)

• The least squares estimates (with the exception of b0) are 1/2 of the estimated effects from
the fixed effects analysis. That is,

b0 = y b1 = A/2 b2 = B/2 b3 = C/2

b12 = AB/2 b13 = AC/2 b23 = BC/2 b123 = ABC/2

• Because all of the contrasts associated with each of the effects are orthogonal, the least squares
estimates remain unchanged for any model containing a subset of terms in (6).

4.2.1 A 23 Design Example

An engineer is interested in the effects of cutting speed (A), tool geometry (B), and cutting angle
(C) on the life (in hours) of a machine tool. Two levels of each factor are chosen, and three replicates
of a 23 design are run. The results are summarized below:

A B C Replicates Treatment
x1 x2 x3 Sums
− − − 22 31 25 (1) = 78
+ − − 32 43 29 a = 104
− + − 35 34 50 b = 119
+ + − 55 47 46 ab = 148
− − + 44 45 38 c = 127
+ − + 40 37 36 ac = 113
− + + 60 50 54 bc = 164
+ + + 39 41 47 abc = 127

Analyze the data (with lack-of-fit tests) assuming the following 4 models:

• (Model 1): An additive model with fixed (categorical) effects.

• (Model 2): A first-order regression model.

• (Model 3): An interaction model with fixed (categorical) effects.

• (Model 4): A regression model with all two-factor crossproduct (interaction). terms.

Note there are df for pure error.
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• We will first estimate effects and sums of squares using the formulas, then use SAS to perform
the analysis. Recall:

(1) a b ab c ac bc abc
78 104 119 148 127 113 164 127

Model
Fixed Effects −→ I A B C AB AC BC ABC Treatment
Regression −→ Int x1 x2 x3 x1x2 x1x3 x2x3 x1x2x3 Sums

+ − − − + + + − (1) = 78
+ + − − − − + + a = 104
+ − + − − + − + b = 119
+ + + − + − − − ab = 148
+ − − + + − − + c = 127
+ + − + − + − − ac = 113
+ − + + − − + − bc = 164
+ + + + + + + + abc = 127

• The fixed effects estimates are

A =
104 + 148 + 113 + 127− 78− 119− 127− 164

(4)(3)
=

4

12
= .3

B =
119 + 148 + 164 + 127− 78− 104− 127− 113

(4)(3)
=

136

12
= 11.3

C =
127 + 113 + 164 + 127− 78− 104− 119− 148

(4)(3)
=

82

12
= 6.83

AB =
78 + 148 + 127 + 127− 104− 119− 113− 164

(4)(3)
=
−20

12
= −1.6

AC =
78 + 119 + 113 + 127− 104− 148− 127− 164

(4)(3)
=
−106

12
= −8.83

BC =
78 + 104 + 164 + 127− 119− 148− 127− 113

(4)(3)
=
−34

12
= −2.83

ABC =
104 + 119 + 127 + 127− 78− 148− 113− 164

(4)(3)
=
−26

12
= −2.16

• The sums of squares are calculated using
Γ2
effect

8n
:

SSA =
42

24
= .6 SSB =

(136)2

24
= 770.6 SSC =

822

24
= 280.16

SSAB =
(−20)2

24
= 16.6 SSAC =

(−106)2

24
= 468.16

SSBC =
(−34)2

24
= 48.16 SSABC =

(−26)2

24
= 28.16
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• Fixed effects additive model (Model 1):

yijkl = µ + αi + βj + γk + εijkl (i = ±1, j = ±1, k = ±1, l = 1, 2, 3)

• Note the effect estimates in the SAS output match the formula calculations.

• First-order regression model (Model 2): For i = 1, 2, . . . , 24

yi = β0 + β1x1i + β2x2i + β3x3i + εi

Note that the parameter estimates are 1/2 of those from the fixed effects in Model 1.

• For Models 1 and 2, there are df for pure error and df for total error. Thus, the
df for lack-of-fit = . This means we can add at most additional terms in the
model (such as interaction terms).

• There is a significant lack-of-fit (p-value = ). We can add at most additional terms
in the model (such as interaction terms).

• The residuals in the Residual vs Predicted Value plot (page 50) are not randomly scattered
about 0 for several (x1, x2, x3) combinations. This suggests a lack-of-fit problem.

MODEL 1: ADDITIVE FIXED EFFECTS MODEL

The GLM Procedure

Dependent Variable: Y

MODEL 1: ADDITIVE FIXED EFFECTS MODEL

The GLM Procedure

Dependent Variable: Y

Source DF
Sum of

Squares Mean Square F Value Pr > F

Model 3 1051.500000 350.500000 6.72 0.0026

Error 20 1043.833333 52.191667

Corrected Total 23 2095.333333

R-Square Coeff Var Root MSE Y Mean

0.501829 17.69236 7.224380 40.83333

Source DF Type III SS Mean Square F Value Pr > F

A 1 0.6666667 0.6666667 0.01 0.9111

B 1 770.6666667 770.6666667 14.77 0.0010

C 1 280.1666667 280.1666667 5.37 0.0312

MODEL 2: FIRST ORDER REGRESSION MODEL

The REG Procedure
Model: MODEL1

Dependent Variable: Y

MODEL 2: FIRST ORDER REGRESSION MODEL

The REG Procedure
Model: MODEL1

Dependent Variable: Y

Number of Observations Read 24

Number of Observations Used 24

Analysis of Variance

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 3 1051.50000 350.50000 6.72 0.0026

Error 20 1043.83333 52.19167

Lack of Fit 4 561.16667 140.29167 4.65 0.0111

Pure Error 16 482.66667 30.16667

Corrected Total 23 2095.33333

Root MSE 7.22438 R-Square 0.5018

Dependent Mean 40.83333 Adj R-Sq 0.4271

Coeff Var 17.69236

Parameter Estimates

Variable DF
Parameter

Estimate
Standard

Error t Value Pr > |t|
Variance
Inflation

Intercept 1 40.83333 1.47467 27.69 <.0001 0

X1 1 0.16667 1.47467 0.11 0.9111 1.00000

X2 1 5.66667 1.47467 3.84 0.0010 1.00000

X3 1 3.41667 1.47467 2.32 0.0312 1.00000

MODEL 1: ADDITIVE FIXED EFFECTS MODEL

The GLM Procedure

Dependent Variable: Y

MODEL 1: ADDITIVE FIXED EFFECTS MODEL

The GLM Procedure

Dependent Variable: Y

Parameter Estimate
Standard

Error t Value Pr > |t|

A 0.3333333 2.94934079 0.11 0.9111

B 11.3333333 2.94934079 3.84 0.0010

C 6.8333333 2.94934079 2.32 0.0312
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MODEL 1: ADDITIVE FIXED EFFECTS MODEL

The GLM Procedure

MODEL 1: ADDITIVE FIXED EFFECTS MODEL

The GLM Procedure

Y

Level of
A N Mean Std Dev

-1 12 40.6666667 11.7808267

1 12 41.0000000 7.1858447

Y

Level of
B N Mean Std Dev

-1 12 35.1666667 7.46912838

1 12 46.5000000 8.03967435

Y

Level of
C N Mean Std Dev

-1 12 37.4166667 10.5093753

1 12 44.2500000 7.3870279

MODEL 3: INTERACTION FIXED EFFECTS MODEL

The GLM Procedure

MODEL 3: INTERACTION FIXED EFFECTS MODEL

The GLM Procedure

Y

Level of
A N Mean Std Dev

-1 12 40.6666667 11.7808267

1 12 41.0000000 7.1858447

Y

Level of
B N Mean Std Dev

-1 12 35.1666667 7.46912838

1 12 46.5000000 8.03967435

Y

Level of
A

Level of
B N Mean Std Dev

-1 -1 6 34.1666667 9.7039511

-1 1 6 47.1666667 10.4769588

1 -1 6 36.1666667 5.1153364

1 1 6 45.8333333 5.6005952

Y

Level of
C N Mean Std Dev

-1 12 37.4166667 10.5093753

1 12 44.2500000 7.3870279

Y

Level of
A

Level of
C N Mean Std Dev

-1 -1 6 32.8333333 9.82683401

-1 1 6 48.5000000 7.84219357

1 -1 6 42.0000000 9.79795897

1 1 6 40.0000000 3.89871774

MODEL 3: INTERACTION FIXED EFFECTS MODEL

The GLM Procedure

MODEL 3: INTERACTION FIXED EFFECTS MODEL

The GLM Procedure

Y

Level of
A N Mean Std Dev

-1 12 40.6666667 11.7808267

1 12 41.0000000 7.1858447

Y

Level of
B N Mean Std Dev

-1 12 35.1666667 7.46912838

1 12 46.5000000 8.03967435

Y

Level of
A

Level of
B N Mean Std Dev

-1 -1 6 34.1666667 9.7039511

-1 1 6 47.1666667 10.4769588

1 -1 6 36.1666667 5.1153364

1 1 6 45.8333333 5.6005952

Y

Level of
C N Mean Std Dev

-1 12 37.4166667 10.5093753

1 12 44.2500000 7.3870279

Y

Level of
A

Level of
C N Mean Std Dev

-1 -1 6 32.8333333 9.82683401

-1 1 6 48.5000000 7.84219357

1 -1 6 42.0000000 9.79795897

1 1 6 40.0000000 3.89871774
MODEL 3: INTERACTION FIXED EFFECTS MODEL

The GLM Procedure

Y

Level of
B

Level of
C N Mean Std Dev

-1 -1 6 30.3333333 7.25718035

-1 1 6 40.0000000 3.74165739

1 -1 6 44.5000000 8.36062199

1 1 6 48.5000000 7.91833316
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• Now let’s add the three two-factor interactions to get Models 3 and 4.

• Fixed effects interaction model (Model 3):

yijkl = µ + αi + βj + γk + αβij + αγik + βγjk + εijkl

for (i = ±1, j = ±1, k = ±1, l = 1, 2, 3)

• Note the effect estimates match the formula calculations.

• Interaction regression model (Model 4): For i = 1, 2, . . . , 24

yi = β0 + β1x1i + β2x2i + β3x3i + + β12x1ix2i + β13x1ix3i + β23x2ix3i + εi

Note that the parameter estimates are 1/2 of those from the fixed effects in Model 3.

• The residuals are randomly scattered about 0. This suggests there is no lack-of-fit problem.
The lack-of-fit test (p-value= ) supports this.

MODEL 3: INTERACTION FIXED EFFECTS MODEL

The GLM Procedure

Dependent Variable: Y

MODEL 3: INTERACTION FIXED EFFECTS MODEL

The GLM Procedure

Dependent Variable: Y

Source DF
Sum of

Squares Mean Square F Value Pr > F

Model 6 1584.500000 264.083333 8.79 0.0002

Error 17 510.833333 30.049020

Corrected Total 23 2095.333333

R-Square Coeff Var Root MSE Y Mean

0.756204 13.42457 5.481699 40.83333

Source DF Type III SS Mean Square F Value Pr > F

A 1 0.6666667 0.6666667 0.02 0.8833

B 1 770.6666667 770.6666667 25.65 <.0001

A*B 1 16.6666667 16.6666667 0.55 0.4666

C 1 280.1666667 280.1666667 9.32 0.0072

A*C 1 468.1666667 468.1666667 15.58 0.0010

B*C 1 48.1666667 48.1666667 1.60 0.2226

MODEL 4: INTERACTION REGRESSION MODEL

The REG Procedure
Model: MODEL1

Dependent Variable: Y

MODEL 4: INTERACTION REGRESSION MODEL

The REG Procedure
Model: MODEL1

Dependent Variable: Y

Number of Observations Read 24

Number of Observations Used 24

Analysis of Variance

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 6 1584.50000 264.08333 8.79 0.0002

Error 17 510.83333 30.04902

Lack of Fit 1 28.16667 28.16667 0.93 0.3483

Pure Error 16 482.66667 30.16667

Corrected Total 23 2095.33333

Root MSE 5.48170 R-Square 0.7562

Dependent Mean 40.83333 Adj R-Sq 0.6702

Coeff Var 13.42457

Parameter Estimates

Variable DF
Parameter

Estimate
Standard

Error t Value Pr > |t|
Variance
Inflation

Intercept 1 40.83333 1.11895 36.49 <.0001 0

X1 1 0.16667 1.11895 0.15 0.8833 1.00000

X2 1 5.66667 1.11895 5.06 <.0001 1.00000

X3 1 3.41667 1.11895 3.05 0.0072 1.00000

X1X2 1 -0.83333 1.11895 -0.74 0.4666 1.00000

X1X3 1 -4.41667 1.11895 -3.95 0.0010 1.00000

X2X3 1 -1.41667 1.11895 -1.27 0.2226 1.00000

MODEL 3: INTERACTION FIXED EFFECTS MODEL

The GLM Procedure

Dependent Variable: Y

MODEL 3: INTERACTION FIXED EFFECTS MODEL

The GLM Procedure

Dependent Variable: Y

Parameter Estimate
Standard

Error t Value Pr > |t|

A 0.3333333 2.23789408 0.15 0.8833

B 11.3333333 2.23789408 5.06 <.0001

C 6.8333333 2.23789408 3.05 0.0072

A*B -1.6666667 2.23789408 -0.74 0.4666

A*C -8.8333333 2.23789408 -3.95 0.0010

B*C -2.8333333 2.23789408 -1.27 0.2226
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MODEL 2: FIRST ORDER REGRESSION MODEL

The REG Procedure
Model: MODEL1

Dependent Variable: Y

MODEL 2: FIRST ORDER REGRESSION MODEL

The REG Procedure
Model: MODEL1

Dependent Variable: Y

Fit Diagnostics for Y

0.4271Adj R-Square
0.5018R-Square
52.192MSE

20Error DF
4Parameters

24Observations
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MODEL 4: INTERACTION REGRESSION MODEL

The REG Procedure
Model: MODEL1

Dependent Variable: Y

MODEL 4: INTERACTION REGRESSION MODEL

The REG Procedure
Model: MODEL1

Dependent Variable: Y

Fit Diagnostics for Y
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SAS Code for the 23 Design Example

• ESTIMATE statements in SAS are used to calculate average effect estimates.

• Because of orthogonality, all standard errors are identically

2.24227067 =
√
MSE/2n =

√
30.1667/6

DM ’LOG; CLEAR; OUT; CLEAR;’;

ODS LISTING;
ODS PRINTER PDF file=’C:\COURSES\ST578\SAS\TWO3.PDF’;
OPTIONS NODATE NONUMBER;

OPTIONS PS=54 LS=76 NODATE NONUMBER;

DATA IN;
DO C = -1 TO 1 BY 2;
DO B = -1 TO 1 BY 2;
DO A = -1 TO 1 BY 2;
DO REP = 1 TO 3;

INPUT Y @@;
X1=A; X2=B; X3=C;
X1X2 = X1*X2; X1X3 = X1*X3; X2X3 = X2*X3;
OUTPUT;

END; END; END; END;
LINES;
22 31 25 32 43 29 35 34 50 55 47 46
44 45 38 40 37 36 60 50 54 39 41 47
;
PROC GLM DATA=IN PLOTS=NONE;

CLASS A B C;
MODEL Y = A B C / SS3;
MEANS A B C;
ESTIMATE ’A’ A -1 1;
ESTIMATE ’B’ B -1 1;
ESTIMATE ’C’ C -1 1;

TITLE ’MODEL 1: ADDITIVE FIXED EFFECTS MODEL’;

PROC REG DATA=IN PLOTS=(DIAGNOSTICS);
MODEL Y = X1 X2 X3 / LACKFIT VIF;

TITLE ’MODEL 2: FIRST ORDER REGRESSION MODEL’;

PROC GLM DATA=IN PLOTS=NONE;
CLASS A B C;
MODEL Y = A|B|C@2 / SS3 ;
MEANS A|B|C@2;
ESTIMATE ’A’ A -1 1;
ESTIMATE ’B’ B -1 1;
ESTIMATE ’C’ C -1 1;
ESTIMATE ’A*B’ A*B 1 -1 -1 1 / DIVISOR=2;
ESTIMATE ’A*C’ A*C 1 -1 -1 1 / DIVISOR=2;
ESTIMATE ’B*C’ B*C 1 -1 -1 1 / DIVISOR=2;

* ESTIMATE ’A*B*C’ A*B*C -1 1 1 -1 1 -1 -1 1 ;
TITLE ’MODEL 3: INTERACTION FIXED EFFECTS MODEL’;

PROC REG DATA=IN PLOTS=(DIAGNOSTICS);
MODEL Y = X1 X2 X3 X1X2 X1X3 X2X3 / LACKFIT VIF;

TITLE ’MODEL 4: INTERACTION REGRESSION MODEL’;
RUN;
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4.3 Analyzing Unreplicated Experiments

• To test hypotheses in an unreplicated 2k design (n = 1), it is necessary to “pool” interaction
terms (especially higher-order interaction terms), and use the MSE after pooling as an estimate
of the random error σ2.

• The problem is to determine which interaction terms should be pooled together. The following
three steps are recommended:

1. Estimate all effects for the full-factorial interaction model.

2. Make a normal probability plot of the estimated effects (excluding the intercept), and
label the “outlier” effects. Higher-order interactions which are not outliers can be pooled
to form the MSE.

3. Run the ANOVA using this pooled error term.

• Warning: When a higher-order interaction exists, it is inappropriate to pool that interaction
with the other interactions because it will inflate the MSE.

• Some comments on the normal probability plot of the 2k − 1 estimates for either the fixed
effects or regression model:

– If an effect is not significantly different than zero, then it should be randomly and nor-
mally distributed about 0. That is, it is N(0, σ2/ . When plotted, all of the effects
which are not significantly different than zero should lie along a straight line on the
normal probability plot.

– If an effect is significantly different than zero, then it should be randomly and normally
distributed about its mean which we will call β. That is, the effect is N(β, σ2/ ).
Then, in the normal probability plot, all of the non-zero effects will be plotted away from
the line formed by the zero-mean effects.

Unreplicated 24 Design Example (from Montgomery text): In a process development

study on process yield in pounds, four factors were studied: time, concentration (conc), pressure ,
and temperature (temp). Each factor had two levels. A single replicate of the 24 design was run as
a completely randomized design. The resulting data are shown in the following table:

time conc pressure temp yield
− − − − 12
+ − − − 18
− + − − 13
+ + − − 16
− − + − 17
+ − + − 15
− + + − 20
+ + + − 15
− − − + 10
+ − − + 25
− + − + 13
+ + − + 24
− − + + 19
+ − + + 21
− + + + 17
+ + + + 23

Analyze the data from this unreplicated experiment from Design and Analysis of Experiments, by
D. Montgomery (8th ed., p.298).
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A 2**4 DESIGN -- ESTIMATION OF EFFECTS

The GLM Procedure

Dependent Variable: YIELD

Sum of
Source DF Squares Mean Square F Value Pr > F

Model 15 291.7500000 19.4500000 . .
Error 0 0.0000000 .
Corrected Total 15 291.7500000

R-Square Coeff Var Root MSE YIELD Mean
1.000000 . . 17.37500

Type III Mean
Source DF SS Square F Value Pr > F

TIME 1 81.00 81.00 . .
CONC 1 1.00 1.00 . .
TIME*CONC 1 2.25 2.25 . .
PRESSURE 1 16.00 16.00 . .
TIME*PRESSURE 1 72.25 72.25 . .
CONC*PRESSURE 1 0.25 0.25 . .
TIME*CONC*PRESSURE 1 4.00 4.00 . .
TEMP 1 42.25 42.25 . .
TIME*TEMP 1 64.00 64.00 . .
CONC*TEMP 1 0.00 0.00 . .
TIME*CONC*TEMP 1 2.25 2.25 . .
PRESSURE*TEMP 1 0.00 0.00 . .
TIME*PRESSURE*TEMP 1 0.25 0.25 . .
CONC*PRESSURE*TEMP 1 2.25 2.25 . .
TIME*CONC*PRESS*TEMP 1 4.00 4.00 . .

Standard
Parameter Estimate Error t Value Pr > |t|

A TIME 4.50 . . .
B CONC 0.50 . . .
C PRESSURE 2.00 . . .
D TEMP 3.25 . . .

A*B TIME*CONC -0.75 . . .
A*C TIME*PRES -4.25 . . .
A*D TIME*TEMP 4.00 . . .
B*C CONC*PRES 0.25 . . .
B*D CONC*TEMP 0.00 . . .
C*D PRES*TEMP 0.00 . . .

A*B*C TIME*C*P 1.00 . . .
A*B*D TIME*C*T 0.75 . . .
A*C*D TIME*P*T -0.25 . . .
B*C*D C*P*TEMP -0.75 . . .

A*B*C*D T*C*P*T 1.00 . . .

^^^^^^^^^^^
Make a NPP of these estimates
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DM ’LOG; CLEAR; OUT; CLEAR;’;

ODS LISTING;

* ODS PRINTER PDF file=’C:\COURSES\ST578\SAS\TWO4.PDF’;

OPTIONS PS=54 LS=78 NODATE NONUMBER;

DATA IN;

DO TEMP = -1 TO 1 BY 2;

DO PRESSURE = -1 TO 1 BY 2;

DO CONC = -1 TO 1 BY 2;

DO TIME = -1 TO 1 BY 2;

INPUT YIELD @@; OUTPUT;

END; END; END; END;

LINES;

12 18 13 16 17 15 20 15 10 25 13 24 19 21 17 23

;

**********************************************************;

*** PART I: DETERMINE THE ESTIMATES OF THE 15 EFFECTS ***;

**********************************************************;

PROC GLM DATA=IN;

CLASS TIME CONC PRESSURE TEMP;

MODEL YIELD = TIME|CONC|PRESSURE|TEMP / SS3;

ESTIMATE ’TIME’ TIME -1 1;

ESTIMATE ’CONC’ CONC -1 1;

ESTIMATE ’PRESSURE’ PRESSURE -1 1;

ESTIMATE ’TEMP’ TEMP -1 1;

ESTIMATE ’TIME*CONC’ TIME*CONC 1 -1 -1 1 / DIVISOR=2;

ESTIMATE ’TIME*PRES’ TIME*PRESSURE 1 -1 -1 1 / DIVISOR=2;

ESTIMATE ’TIME*TEMP’ TIME*TEMP 1 -1 -1 1 / DIVISOR=2;

ESTIMATE ’CONC*PRES’ CONC*PRESSURE 1 -1 -1 1 / DIVISOR=2;

ESTIMATE ’CONC*TEMP’ CONC*TEMP 1 -1 -1 1 / DIVISOR=2;

ESTIMATE ’PRES*TEMP’ PRESSURE*TEMP 1 -1 -1 1 / DIVISOR=2;

ESTIMATE ’TIME*C*P’ TIME*CONC*PRESSURE -1 1 1 -1 1 -1 -1 1 / DIVISOR=4;

ESTIMATE ’TIME*C*T’ TIME*CONC*TEMP -1 1 1 -1 1 -1 -1 1 / DIVISOR=4;

ESTIMATE ’TIME*P*T’ TIME*PRESSURE*TEMP -1 1 1 -1 1 -1 -1 1 / DIVISOR=4;

ESTIMATE ’C*P*TEMP’ CONC*PRESSURE*TEMP -1 1 1 -1 1 -1 -1 1 / DIVISOR=4;

ESTIMATE ’T*C*P*T’ TIME*CONC*PRESSURE*TEMP

1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 1 -1 -1 1 / DIVISOR=8;

TITLE ’A 2**4 DESIGN -- ESTIMATION OF EFFECTS’;
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**************************************************************************;

*** PART II: MAKE A NORMAL PROBABILITY PLOT OF THE ESTIMATED EFFECTS ***;

**************************************************************************;

DATA FX; INPUT EFFECTS @@; LINES;

4.5 0.5 2 3.25 -0.75 -4.25 4 0.25 0 0 1 0.75 -0.25 -0.75 1

;

PROC UNIVARIATE DATA=FX PLOTS;

VAR EFFECTS;

TITLE ’A 2**4 DESIGN -- NORMAL PROBABILITY PLOT OF EFFECTS’;

A 2**4 DESIGN -- NORMAL PROBABILITY PLOT OF EFFECTS

The UNIVARIATE Procedure

Distribution and Probability Plot for EFFECTS
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Analysis I: Pooling high order interactions

• After pooling all 3-factor and 4-factor interaction, we have 5 df for the MSE.

• The ANOVA indicates significant A, C, AC, D, and AD effects. These match the highlighted
points on the normal probability plot of effects.

******************************************************************;

*** PART III: RUN ANOVA WITH POOLED HIGHER ORDER INTERACTIONS ***;

******************************************************************;

PROC GLM DATA=IN;

CLASS TIME CONC PRESSURE TEMP;

MODEL YIELD = TIME|CONC|PRESSURE|TEMP@2 / SS3;

TITLE ’A 2**4 DESIGN -- POOLING HIGHER ORDER INTERACTIONS’;
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Analysis II: Pooling terms involving factor B = concentration (CONC)

• After pooling all terms involving CONC, we have 8 df for the MSE.

• The ANOVA indicates significant A, C, AC, D, and AD effects. These match the highlighted
points on the normal probability plot of effects.

• After factor B is removed, we still retain balance and orthogonality. We now have a 23 design
with n = 2 replicates for each combination of factor levels for A, C, and D.

**************************************************************;

*** RUN ANOVA WITH CONCENTRATION REMOVED FROM THE ANALYSIS ***;

**************************************************************;

PROC GLM DATA=IN;

CLASS TIME PRESSURE TEMP;

MODEL YIELD = TIME|PRESSURE|TEMP / SS3;

TITLE ’ANOVA WITH CONCENTRATION REMOVED FROM THE ANALYSIS’;

RUN;
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