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Introduction to Finite Element Methods



Need for Computational Methods

• Solutions Using Either Strength of  Materials or Theory of 

Elasticity Are Normally Accomplished for Regions and 

Loadings With Relatively Simple Geometry

• Many Applicaitons Involve Cases with Complex Shape, 

Boundary Conditions and Material Behavior

• Therefore a Gap Exists Between What Is Needed in 

Applications and What Can Be Solved by Analytical Closed-

form Methods

• This Has Lead to the Development of Several 

Numerical/Computational Schemes Including: Finite 

Difference, Finite Element and Boundary Element Methods



Introduction to Finite Element Analysis

The finite element method is a computational scheme to solve field problems in  

engineering and science.  The technique has very wide application, and has been used on 

problems involving stress analysis, fluid mechanics, heat transfer, diffusion, vibrations, 

electrical and magnetic fields, etc.  The fundamental concept involves dividing the body 

under study into a finite number of pieces (subdomains) called elements (see Figure).  

Particular assumptions are then made on the variation of the unknown dependent 

variable(s) across each element using so-called interpolation or approximation functions.  

This approximated variation is quantified in terms of solution values at special element 

locations called nodes. Through this discretization process, the method sets up an 

algebraic system of equations for unknown nodal values which approximate the 

continuous solution.  Because element size, shape and approximating scheme can be 

varied to suit the problem, the method can accurately simulate solutions to problems of 

complex geometry and loading and thus this technique has become a very useful and 

practical tool.



Advantages of Finite Element Analysis

- Models Bodies of Complex Shape

- Can Handle General Loading/Boundary Conditions

- Models Bodies Composed of Composite and Multiphase Materials

- Model is Easily Refined for Improved Accuracy by Varying 

Element Size and Type (Approximation Scheme)

- Time Dependent and Dynamic Effects Can Be Included

- Can Handle a Variety Nonlinear Effects Including Material 

Behavior, Large Deformations, Boundary Conditions, Etc. 



Basic Concept of the Finite Element Method

Any continuous solution field such as stress, displacement, 

temperature, pressure, etc. can be approximated by a 

discrete model composed of a set of piecewise continuous 

functions defined over a finite number of subdomains.
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Two-Dimensional Discretization
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Discretization Concepts
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Exact Temperature Distribution, T(x)

Finite Element Discretization

Linear Interpolation Model
        (Four Elements)

Quadratic Interpolation Model
             (Two Elements)
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Common Types of Elements

One-Dimensional Elements

Line

Rods, Beams, Trusses, Frames

Two-Dimensional Elements

Triangular, Quadrilateral

Plates, Shells, 2-D Continua

Three-Dimensional Elements

Tetrahedral, Rectangular Prism (Brick)

3-D Continua



Discretization Examples

One-Dimensional 

Frame Elements

Two-Dimensional 

Triangular Elements

Three-Dimensional 

Brick Elements



Basic Steps in the Finite Element Method

Time Independent Problems

- Domain Discretization

- Select Element Type (Shape and Approximation)

- Derive Element Equations (Variational and Energy Methods)

- Assemble Element Equations to Form Global System

[K]{U} = {F}

[K] = Stiffness or Property Matrix

{U} = Nodal Displacement Vector

{F} = Nodal Force Vector

- Incorporate Boundary and Initial Conditions

- Solve Assembled System of Equations for Unknown Nodal         

Displacements and Secondary Unknowns of Stress and Strain Values



Common Sources of Error in FEA

• Domain Approximation

• Element Interpolation/Approximation

• Numerical Integration Errors

(Including Spatial and Time Integration)

• Computer Errors (Round-Off, Etc., )



Measures of Accuracy in FEA

Accuracy

Error = |(Exact Solution)-(FEM Solution)|

Convergence

Limit of Error as: 

Number of Elements (h-convergence) 

or

Approximation Order (p-convergence) 

Increases

Ideally, Error  0 as Number of Elements or 

Approximation Order  



Two-Dimensional Discretization Refinement 

(Discretization with 228 Elements)

(Discretization with 912 Elements)

(Triangular Element)

(Node)
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Simple Element Equation Example

Direct Stiffness Derivation
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Common Approximation Schemes

One-Dimensional Examples

Linear Quadratic Cubic

Polynomial Approximation

Most often polynomials are used to construct approximation 

functions for each element.  Depending on the order of 

approximation, different numbers of element parameters are 

needed to construct the appropriate function. 

Special Approximation

For some cases (e.g. infinite elements, crack or other singular 

elements) the approximation function is chosen to have special 

properties as determined from theoretical considerations 


