Chapter 2 Crisp (Classical) Sets and Fuzzy Sets

Dr. Wafa' H. AlAlaween wafa.alalaween@gmail.com

Crisp Set: Definitions

- Universe of discourse (X): A collection of objects having the same characteristics.
- The elements (x) of a universe are either discrete or continuous.
- Cardinal number (n_x) : The total number of elements in a universe.
- Discrete universes have a finite cardinal number, whereas continuous universes have an infinite cardinality.
- Set: Collections of elements within a UNIVERSE.
- Subset: Collections of elements within **SETS**.
- The whole set: collection of all elements in the set.

Crisp Set: Notations

• Suppose that A and B consist of collections of some elements in X, then

$x \in \mathbf{X}$	\rightarrow	x belongs to X
$x \in \mathbf{A}$	\rightarrow	x belongs to A
$x \notin \mathbf{A}$	\rightarrow	x does not belong to A

• Also

$A \subset B$	\rightarrow	A is fully contained in B (if $x \in A$, then $x \in B$)
$A \subseteq B$	\rightarrow	A is contained in or is equivalent to B
$(A \leftrightarrow B)$	\rightarrow	$A \subseteq B$ and $B \subseteq A$ (A is equivalent to B)

- Null set (\emptyset) : The set that contains no elements.
- Power set (P(X)): All possible sets of X.

- Example
- $X = \{1, 2, 3, 4\}$
- Cardinal number?
- Power set?
- Cardinal number of the power set?

Crisp Sets: Operations

• Suppose that A and B two sets on the universe X, then

Union	$A \cup B = \{x \mid x \in A \text{ or } x \in B\}.$
Intersection	$A \cap B = \{x \mid x \in A \text{ and } x \in B\}.$
Complement	$\overline{\mathbf{A}} = \{ x \mid x \notin \mathbf{A}, x \in \mathbf{X} \}.$
Difference	$A B = \{x x \in A \text{ and } x \notin B\}.$

• Such operations can be easily presented using Venn diagrams.

Crisp Sets: Properties

• Commutativity: $A \cup B = B \cup A$

 $A \cap B = B \cap A.$

• Associativity: $A \cup (B \cup C) = (A \cup B) \cup C$ $A \cap (B \cap C) = (A \cap B) \cap C.$

• Distributivity: $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ $A \cap (B \cup C) = (A \cap B) \cup (A \cap C).$

• Idempotency: $A \cup A = A$ $A \cap A = A$.

• Identity: $A \cup \emptyset = A$ $A \cap X = A$ $A \cap \emptyset = \emptyset.$ $A \cup X = X.$

- Transitivity: If $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$.
- Involution: $\overline{\overline{A}} = A$.
- Axiom of excluded middle: $A \cup \overline{A} = X$.
- Axiom of contradiction: $A \cap \overline{A} = \emptyset$.

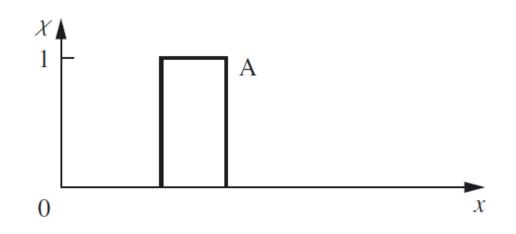
• De Morgan's principles: The complement of a union or an intersection is equal to the intersection or union, respectively.

 $\overline{A \cap B} = \overline{A} \cup \overline{B}.$ $\overline{A \cup B} = \overline{A} \cap \overline{B}.$

Mapping of Crisp Sets to Functions

- Relating set-theoretic forms to function-theoretic terms.
- Mapping elements (subsets) in an universe of discourse to elements (subsets) in another one.
- Membership function is a mapping for a crisp set:

$$\chi_{\mathcal{A}}(x) = \begin{cases} 1, & x \in \mathcal{A} \\ 0, & x \notin \mathcal{A} \end{cases}$$



• Suppose that A and B are two sets on the universe X, then the function-theoretic terms:

 $\begin{array}{ll} \textit{Union} & A \cup B \longrightarrow \chi_{A \cup B}(x) = \chi_A(x) \lor \chi_B(x) = \max(\chi_A(x), \chi_B(x)). \\ \textit{Intersection} & A \cap B \longrightarrow \chi_{A \cap B}(x) = \chi_A(x) \land \chi_B(x) = \min(\chi_A(x), \chi_B(x)). \\ \textit{Complement} & \overline{A} \longrightarrow \chi_{\overline{A}}(x) = 1 - \chi_A(x). \end{array}$

Containment $A \subseteq B \longrightarrow \chi_A(x) \le \chi_B(x)$.

Note that crisp sets are a special case of fuzzy sets

Fuzzy Sets

- Fuzzy sets contain elements that have varying degrees of membership.
- For discrete universe:

$$A_{\widetilde{\omega}} = \left\{ \frac{\mu_{\widetilde{\lambda}}(x_1)}{x_1} + \frac{\mu_{\widetilde{\lambda}}(x_2)}{x_2} + \cdots \right\} = \left\{ \sum_i \frac{\mu_{\widetilde{\lambda}}(x_i)}{x_i} \right\}$$

• For continuous universe:

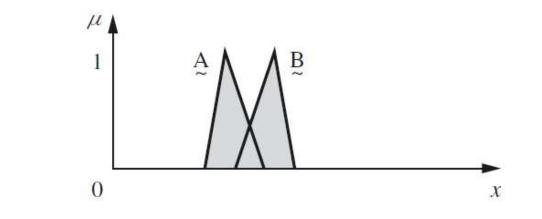
$$\mathbf{A} = \left\{ \int \frac{\mu_{\mathbf{A}}(x)}{x} \right\}$$

The summation and the integral signs are not algebraic symbols.

Fuzzy Sets: Operations

• Suppose that \underline{A} and \underline{B} are two sets on the universe X, then the function-theoretic terms:

Union	$\mu_{\underline{A}\cup\underline{B}}(x) = \mu_{\underline{A}}(x) \vee \mu_{\underline{B}}(x).$
Intersection	$\mu_{\underline{A}\cap\underline{B}}(x) = \mu_{\underline{A}}(x) \wedge \mu_{\underline{B}}(x).$
Complement	$\mu_{\overline{\underline{A}}}(x) = 1 - \mu_{\underline{\underline{A}}}(x).$



- All the operations for classical sets are valid for fuzzy sets **EXCEPT for the excluded middle axioms.**
- The excluded middle axioms have been extended for fuzzy sets:

$$\underbrace{A}_{\sim} \cup \overline{\underline{A}}_{\sim} \neq X.$$
$$\underbrace{A}_{\sim} \cap \overline{\underline{A}}_{\sim} \neq \emptyset.$$

- De Morgan's principles for crisp sets are valid for fuzzy sets.
- Fuzzy intersections and unions can be represented as t-norms and tconorms, respectively.

Fuzzy Sets: Question

For a collection of fuzzy sets and subsets on a universe, what is:

- The fuzzy power set?
- The cardinal number of the fuzzy power set?

Fuzzy Sets: Example

• Suppose that we have two discrete fuzzy sets:

$$A_{\approx} = \left\{ \frac{1}{2} + \frac{0.5}{3} + \frac{0.3}{4} + \frac{0.2}{5} \right\} \text{ and } B_{\approx} = \left\{ \frac{0.5}{2} + \frac{0.7}{3} + \frac{0.2}{4} + \frac{0.4}{5} \right\}$$

- Note that the membership function of 1 is Zero.
- Calculate: Complement, union, intersection and difference.

Complement	$\overline{\underline{A}} = \left\{ \frac{1}{1} + \frac{0}{2} + \frac{0.5}{3} + \frac{0.7}{4} + \frac{0.8}{5} \right\}.$
	$\overline{\mathbb{B}} = \left\{ \frac{1}{1} + \frac{0.5}{2} + \frac{0.3}{3} + \frac{0.8}{4} + \frac{0.6}{5} \right\}.$
Union	$\underline{A} \cup \underline{B} = \left\{ \frac{1}{2} + \frac{0.7}{3} + \frac{0.3}{4} + \frac{0.4}{5} \right\}.$
Intersection	$\underline{A} \cap \underline{B} = \left\{ \frac{0.5}{2} + \frac{0.5}{3} + \frac{0.2}{4} + \frac{0.2}{5} \right\}.$
Difference	$\underline{A} \underline{B} = \underline{A} \cap \overline{\underline{B}} = \left\{ \frac{0.5}{2} + \frac{0.3}{3} + \frac{0.3}{4} + \frac{0.2}{5} \right\}.$
	$\underline{\mathbf{B}} \underline{\mathbf{A}} = \underline{\mathbf{B}} \cap \overline{\underline{\mathbf{A}}} = \left\{ \frac{0}{2} + \frac{0.5}{3} + \frac{0.2}{4} + \frac{0.4}{5} \right\}.$